
A Compiled Implementation
of Normalization by Evaluation

Klaus Aehlig1 Florian Haftmann2 Tobias Nipkow2

1Department of Computer Science
Swansea University

2Institut für Informatik
Technische Universität München

Conference on Theorem Proving in Higher Order Logics 2008

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))
I But also free and bound variables:

λa.S(a) + S(b) →∗ λa.S(S(a + b))

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))
I But also free and bound variables:

λa.S(a) + S(b) →∗ λa.S(S(a + b))

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))
I But also free and bound variables:

λa.S(a) + S(b) →∗ λa.S(S(a + b))

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))

I But also free and bound variables:
λa.S(a) + S(b) →∗ λa.S(S(a + b))

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))
I But also free and bound variables:

λa.S(a) + S(b) →∗ λa.S(S(a + b))

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing

I Proofs involving complex computations
(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)

2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate

3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.
Model and verify implementation.

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Handling of Variables

I “compile, evaluate, read back” works fine. . .
for closed term of ground type

I But what about open terms?
I Even closed functions can only be presented

as λx .t with x free in t

I So we do have to handle free variables!

I Need a data type containing both,
its own function space and free variables

I First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

I But need to implement application!
What is (Var "x") v supposed to mean?

Handling of Variables

I “compile, evaluate, read back” works fine. . .
for closed term of ground type

I But what about open terms?
I Even closed functions can only be presented

as λx .t with x free in t
I So we do have to handle free variables!

I Need a data type containing both,
its own function space and free variables

I First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

I But need to implement application!
What is (Var "x") v supposed to mean?

Handling of Variables

I “compile, evaluate, read back” works fine. . .
for closed term of ground type

I But what about open terms?
I Even closed functions can only be presented

as λx .t with x free in t
I So we do have to handle free variables!

I Need a data type containing both,
its own function space and free variables

I First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

I But need to implement application!
What is (Var "x") v supposed to mean?

Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

Can just collect the arguments

datatype Univ =
| Var of string

* Univ list

| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))

Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

Can just collect the arguments

datatype Univ =
| Var of string

* Univ list

| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))

Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))

Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))

Constructors, Arity, . . .
I Fine for the pure lambda-calculus.

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors

datatype Univ =
| C of string
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors Application?

datatype Univ =
| C of string
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors Application won’t cause a redex!

datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).
I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors

datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).
I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors, allow n-ary functions

, partially applied

datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of int * (Univ list -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f) v = f v

Constructors, Arity, . . .
I Want lambda-calculus with data constructors (0, S , . . .).
I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors, allow n-ary functions, partially applied

datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of int * (Univ list -> Univ) * Univ list

apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo 0 f vs) v = f (vs @ [v])
apply (Clo n f vs) v = Clo (n-1) f (vs @ [v])

Compiling Functions
I Still a little detail to solve: How do we translate functions?

I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ
Not exhaustive!! E.g., we have Var "x".

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ
and add a default clause

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ
and add a default clause

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [as, bs] = C "apd" [as,bs]

Compiling Functions
I Still a little detail to solve: How do we translate functions?
I Example with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ
and add a default clause

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]
| apd [C "apd" [as, bs], cs] =

apd [as, apd [bs, cs]]
| apd [as, bs] = C "apd" [as,bs]

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus

+ constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus

+ constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml

| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus + constructors

+ functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat

| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus + constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus + constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm

| term ml

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus + constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn

Reduction ⇒ on ML-terms

I β-reduction

I rewriting wrt compR :: (cname ×ml list ×ml)set

(c , vs, v) ∈ R ∀n. closed(σ n)

A (C c) (map subst σ) vs ⇒ subst σ v

I Reductions for apply , eg

apply (Clo 0 f vs) v ⇒ A f (vs@[v])

I Reductions for term, eg

term (Clo f vs n) ⇒
λ(term (apply (lift 0 (Clo f vs n)) (Var 0 [])))

Reduction ⇒ on ML-terms

I β-reduction

I rewriting wrt compR :: (cname ×ml list ×ml)set

(c , vs, v) ∈ R ∀n. closed(σ n)

A (C c) (map subst σ) vs ⇒ subst σ v

I Reductions for apply , eg

apply (Clo 0 f vs) v ⇒ A f (vs@[v])

I Reductions for term, eg

term (Clo f vs n) ⇒
λ(term (apply (lift 0 (Clo f vs n)) (Var 0 [])))

Reduction ⇒ on ML-terms

I β-reduction

I rewriting wrt compR :: (cname ×ml list ×ml)set

(c , vs, v) ∈ R ∀n. closed(σ n)

A (C c) (map subst σ) vs ⇒ subst σ v

I Reductions for apply , eg

apply (Clo 0 f vs) v ⇒ A f (vs@[v])

I Reductions for term, eg

term (Clo f vs n) ⇒
λ(term (apply (lift 0 (Clo f vs n)) (Var 0 [])))

Reduction ⇒ on ML-terms

I β-reduction

I rewriting wrt compR :: (cname ×ml list ×ml)set

(c , vs, v) ∈ R ∀n. closed(σ n)

A (C c) (map subst σ) vs ⇒ subst σ v

I Reductions for apply , eg

apply (Clo 0 f vs) v ⇒ A f (vs@[v])

I Reductions for term, eg

term (Clo f vs n) ⇒
λ(term (apply (lift 0 (Clo f vs n)) (Var 0 [])))

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced

Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules

Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .

Main Correctness Theorem

If t and t ′ are pure λ-terms (no term)

and term(comp-fixed t) ⇒∗ t ′

then t →∗ t ′

Main Correctness Theorem

If t and t ′ are pure λ-terms (no term)

and term(comp-fixed t) ⇒∗ t ′

then t →∗ t ′

Main Correctness Theorem

If t and t ′ are pure λ-terms (no term)

and term(comp-fixed t) ⇒∗ t ′

then t →∗ t ′

Main Correctness Theorem

If t and t ′ are pure λ-terms (no term)

and term(comp-fixed t) ⇒∗ t ′

then t →∗ t ′

Statistics

Size of theory: 1100 loc

Definitions: 30%

Proofs about substitutions: 30%
Main proof: 40%

Statistics

Size of theory: 1100 loc

Definitions: 30%

Proofs about substitutions: 30%
Main proof: 40%

Statistics

Size of theory: 1100 loc

Definitions: 30%

Proofs about substitutions: 30%
Main proof: 40%

Statistics

Size of theory: 1100 loc

Definitions: 30%

Proofs about substitutions: 30%

Main proof: 40%

Statistics

Size of theory: 1100 loc

Definitions: 30%

Proofs about substitutions: 30%
Main proof: 40%

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs,

hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier

10 × slower than direct compilation to ML

Implementation

I Builds on Isabelle’s code generation infrastructure

I 475 loc

I Does not perform proofs, hence verification

I Typical performance figures:

100 × faster than simplifier
10 × slower than direct compilation to ML

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Grégoire & Leroy [ICFP 02]
Abstract machine for fast normalization in Coq
Kernel extension
Verified

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Grégoire & Leroy [ICFP 02]
Abstract machine for fast normalization in Coq
Kernel extension
Verified

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Grégoire & Leroy [ICFP 02]
Abstract machine for fast normalization in Coq
Kernel extension
Verified

Related Work

Berger, Eberl & Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Grégoire & Leroy [ICFP 02]
Abstract machine for fast normalization in Coq
Kernel extension
Verified

Future Work

Generalize:

I Repeated variables on lhs

I Ordered rewriting for permutative rules

I Conditional rewriting?

I . . .

Future Work

Generalize:

I Repeated variables on lhs

I Ordered rewriting for permutative rules

I Conditional rewriting?

I . . .

Future Work

Generalize:

I Repeated variables on lhs

I Ordered rewriting for permutative rules

I Conditional rewriting?

I . . .

Future Work

Generalize:

I Repeated variables on lhs

I Ordered rewriting for permutative rules

I Conditional rewriting?

I . . .

Future Work

Generalize:

I Repeated variables on lhs

I Ordered rewriting for permutative rules

I Conditional rewriting?

I . . .

