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Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

I Recursion equations with pattern matching:
S(x) + y = S(x + y)

I But also arbitrary term-rewriting rules:
(x + y) + z = x + (y + z)

Terms:

I Ground terms: S(0) + S(0) →∗ S(S(0))
I But also free and bound variables:

λa.S(a) + S(b) →∗ λa.S(S(a + b))
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Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

I Validation and testing
I Proofs involving complex computations

(4CT, Kepler Conjecture)

How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Model and verify implementation.
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Handling of Variables

I “compile, evaluate, read back” works fine. . .
for closed term of ground type

I But what about open terms?
I Even closed functions can only be presented

as λx .t with x free in t

I So we do have to handle free variables!

I Need a data type containing both,
its own function space and free variables

I First attempt

datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

I But need to implement application!
What is (Var "x") v supposed to mean?
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Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 

Can just collect the arguments

datatype Univ =
| Var of string

* Univ list

| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))



Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 

Can just collect the arguments

datatype Univ =
| Var of string

* Univ list

| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))



Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))



Handling of Variables (cont’d)

I Have to define what an application (Var "x") v means.

I An application (x~t)s never creates a new redex!

 Can just collect the arguments

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v

I As Univ denotes normal terms, we can go back easily

term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new var() in

Lam x (term (f x))



Constructors, Arity, . . .
I Fine for the pure lambda-calculus.

I Some functions have higher arity

min x 0 = x
min 0 y = y
min (Sx) (Sy) = S(min x y)

 Add constructors

datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f ) v = f v
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I Want lambda-calculus with data constructors (0, S , . . . ).
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Compiling Functions
I Still a little detail to solve: How do we translate functions?

I Example

with rewrite rule

apd Nil bs = bs
apd (Cons a as) bs = Cons a (apd as bs)

apd (apd as bs) cs = apd as (apd bs cs)

I Just match against the constructors in Univ

I For rewrite rules, match against the function “constructors”

fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

| apd [as, bs] = C "apd" [as,bs]
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Models of ML-Terms and λ-Terms

We use de Bruijn indices.

ML-terms consist of ML’s λ-calculus

+ constructors + functions

ml = C cname
| V nat
| A ml (ml list)
| Lam ml
| C cname (ml list)
| Var nat (ml list)
| Clo ml (ml list) nat
| apply ml ml

Abstract λ-terms:

tm = C cname | V nat | tm • tm | λtm | term ml
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Reduction → on pure λ-terms

I β-reduction

I η-expansion

I rewriting wrt R :: (cname × tm list × tm)set

(c , ts, t) ∈ R

C c •• map (subst σ) ts → subst σ t

where t ••[t1, . . . , tn] = t • t1 • · · · • tn
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Reduction ⇒ on ML-terms

I β-reduction

I rewriting wrt compR :: (cname ×ml list ×ml)set

(c , vs, v) ∈ R ∀n. closed(σ n)

A (C c) (map subst σ) vs ⇒ subst σ v

I Reductions for apply , eg

apply (Clo 0 f vs) v ⇒ A f (vs@[v ])

I Reductions for term, eg

term (Clo f vs n) ⇒
λ(term (apply (lift 0 (Clo f vs n)) (Var 0 [])))
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Compilation from λ-Terms to ML-terms

Two variants:

I comp-fixed for compiling a term to be reduced
Treats variables as fixed: V 7→ Var

I comp-open for compiling rewrite rules
Treats variables as open: V 7→ V

Rule compilation:

compR = . . . comp-open . . .R . . .
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