A Compiled Implementation of Normalization by Evaluation

Klaus Aehlig ${ }^{1}$ Florian Haftmann ${ }^{2}$ Tobias Nipkow ${ }^{2}$

${ }^{1}$ Department of Computer Science
Swansea University
${ }^{2}$ Institut für Informatik
Technische Universität München
Conference on Theorem Proving in Higher Order Logics 2008

Normalization

Compute normal form of term wrt list of equations (incl β)

Normalization

Compute normal form of term wrt list of equations (incl β)
Equations:

- Recursion equations with pattern matching: $S(x)+y=S(x+y)$

Normalization

Compute normal form of term wrt list of equations (incl β)
Equations:

- Recursion equations with pattern matching: $S(x)+y=S(x+y)$
- But also arbitrary term-rewriting rules:

$$
(x+y)+z=x+(y+z)
$$

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

- Recursion equations with pattern matching:

$$
S(x)+y=S(x+y)
$$

- But also arbitrary term-rewriting rules:

$$
(x+y)+z=x+(y+z)
$$

Terms:

- Ground terms: $S(0)+S(0) \rightarrow^{*} S(S(0))$

Normalization

Compute normal form of term wrt list of equations (incl β)

Equations:

- Recursion equations with pattern matching:

$$
S(x)+y=S(x+y)
$$

- But also arbitrary term-rewriting rules:

$$
(x+y)+z=x+(y+z)
$$

Terms:

- Ground terms: $S(0)+S(0) \rightarrow^{*} S(S(0))$
- But also free and bound variables:

$$
\lambda a . S(a)+S(b) \rightarrow^{*} \lambda a . S(S(a+b))
$$

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

1. Compile to ML-like language (with pattern-matching)

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.

Normalization in Theorem Provers: Why and How

Why: Applications of fast evaluation/symbolic execution:

- Validation and testing
- Proofs involving complex computations (4CT, Kepler Conjecture)
How:

1. Compile to ML-like language (with pattern-matching)
2. Evaluate
3. Read back

Bypass inference kernel.
Model and verify implementation.

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Handling of Variables

- "compile, evaluate, read back" works fine... for closed term of ground type
- But what about open terms?
- Even closed functions can only be presented as λx.t with x free in t

Handling of Variables

- "compile, evaluate, read back" works fine... for closed term of ground type
- But what about open terms?
- Even closed functions can only be presented as $\lambda x . t$ with x free in t
- So we do have to handle free variables!
- Need a data type containing both, its own function space and free variables
- First attempt

```
datatype Univ =
| Var of string
| Clo of (Univ -> Univ)
```


Handling of Variables

- "compile, evaluate, read back" works fine... for closed term of ground type
- But what about open terms?
- Even closed functions can only be presented as $\lambda x . t$ with x free in t
- So we do have to handle free variables!
- Need a data type containing both, its own function space and free variables
- First attempt

```
datatype Univ =
| Var of string
| Clo of (Univ -> Univ)
```

- But need to implement application! What is (Var "x") v supposed to mean?

Handling of Variables (cont'd)

- Have to define what an application (Var "x") v means.
datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

Handling of Variables (cont'd)

- Have to define what an application (Var "x") v means.
- An application $(x \vec{t}) s$ never creates a new redex!
datatype Univ =
| Var of string
| Clo of (Univ -> Univ)

Handling of Variables (cont'd)

- Have to define what an application (Var "x") v means.
- An application $(x \vec{t}) s$ never creates a new redex!
\rightsquigarrow Can just collect the arguments
datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)

```
apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v
```


Handling of Variables (cont'd)

- Have to define what an application (Var "x") v means.
- An application $(x \vec{t}) s$ never creates a new redex!
\rightsquigarrow Can just collect the arguments

```
datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f) v = f v
```

- As Univ denotes normal terms, we can go back easily

```
term (Var x vs) = foldl Tapply (V x) (map term vs)
term (Clo f) = let x = new_var() in
    Lam x (term (f x))
```


Constructors, Arity, ...

- Fine for the pure lambda-calculus.
datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) $\mathrm{v}=\operatorname{Var} \mathrm{x}$ (vs © [v])
apply (Clo f) v = f v

Constructors, Arity, ...

- Want lambda-calculus with data constructors ($0, S, \ldots$).

```
datatype Univ =
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f ) v = f v
```


Constructors, Arity, ...

- Want lambda-calculus with data constructors ($0, S, \ldots$).
\rightsquigarrow Add constructors

```
datatype Univ =
| C of string
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f ) v = f v
```


Constructors, Arity, ...

- Want lambda-calculus with data constructors $(0, S, \ldots)$.
\rightsquigarrow Add constructors Application?

```
datatype Univ =
| C of string
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) v = Var x (vs @ [v])
apply (Clo f ) v = f v
```


Constructors, Arity, ...

- Want lambda-calculus with data constructors ($0, S, \ldots$).
\rightsquigarrow Add constructors Application won't cause a redex!

```
datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of (Univ -> Univ)
apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f ) v = f v
```


Constructors, Arity, ...

- Want lambda-calculus with data constructors $(0, S, \ldots)$.
- Some functions have higher arity

$$
\begin{array}{lll}
\min & x & 0 \\
\min & 0 & y \\
\min & = & y \\
\min) & (S y) & =S(\min x y)
\end{array}
$$

\rightsquigarrow Add constructors
datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of (Univ -> Univ)

```
apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f ) v = f v
```


Constructors, Arity, ...

- Want lambda-calculus with data constructors ($0, S, \ldots$).
- Some functions have higher arity

$$
\begin{array}{lll}
\min & x & 0 \\
\min & 0 & y \\
\min & = & y \\
\min) & (S y) & =S(\min x y)
\end{array}
$$

\rightsquigarrow Add constructors, allow n-ary functions
datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of int * (Univ list -> Univ)
apply (Var x vs) $\mathrm{v}=\operatorname{Var} \mathrm{x}$ (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo f) v = f v

Constructors, Arity, ...

- Want lambda-calculus with data constructors ($0, S, \ldots$).
- Some functions have higher arity

$$
\begin{aligned}
& \min x 0=x \\
& \min 0 \quad y=y \\
& \min (S x)(S y)=S(\min x y)
\end{aligned}
$$

\rightsquigarrow Add constructors, allow n-ary functions, partially applied

```
datatype Univ =
| C of string * Univ list
| Var of string * Univ list
| Clo of int * (Univ list -> Univ) * Univ list
apply (Var x vs) v = Var x (vs @ [v])
apply (C s args) v = C s (args @ [v])
apply (Clo O f vs) v = f (vs @ [v])
apply (Clo n f vs) v = Clo (n-1) f (vs @ [v])
```


Compiling Functions

- Still a little detail to solve: How do we translate functions?

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example

$$
\begin{array}{lll}
\text { apd } & \text { Nil } & b s=b s \\
\text { apd } & (\text { Cons } a \text { as }) & b s=\text { Cons } a(\text { apd as } b s)
\end{array}
$$

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example

$$
\begin{array}{lll}
\text { apd } & \text { Nil } & b s=b s \\
\text { apd } & (\text { Cons } a \text { as }) & b s=\text { Cons } a(\text { apd as } b s)
\end{array}
$$

- Just match against the constructors in Univ
fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example

$$
\begin{array}{lll}
\text { apd } & \text { Nil } & b s=b s \\
\text { apd } & (\text { Cons } a \text { as }) & b s=\text { Cons } a(\text { apd as } b s)
\end{array}
$$

- Just match against the constructors in Univ Not exhaustive!! E.g., we have Var "x".
fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs]

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example

$$
\begin{array}{lll}
\text { apd } & \text { Nil } & b s=b s \\
\text { apd } & (\text { Cons } a \text { as }) & b s=\text { Cons } a(\text { apd as } b s)
\end{array}
$$

- Just match against the constructors in Univ and add a default clause
fun apd [C "Nil" [], bs] = bs
| apd [C "Cons" [a, as], bs] = C "Cons" [a, apd as bs] apd [as, bs] = C "apd" [as,bs]

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example with rewrite rule

$$
\begin{array}{ll}
\text { apd } & \mathrm{Nil} \\
\text { apd } & b s=b s \\
(\text { Cons } a \operatorname{as}) & b s=\text { Cons a }(\text { and as } b s) \\
\text { apd } & (\text { and as } b s) c s=\operatorname{apd} a s(\operatorname{apd} b s c s)
\end{array}
$$

- Just match against the constructors in Univ and add a default clause
fun pd [C "Nil" [], bs] = bs
| ap [C "Cons" [a, as], bs] = C "Cons" [a, app as bs]
| pd [as, bs] = C "apd" [as,bs]

Compiling Functions

- Still a little detail to solve: How do we translate functions?
- Example with rewrite rule

$$
\begin{array}{ll}
\text { apd } & \mathrm{Nil} \\
\text { and } & b s=b s \\
(\text { Cons } a \operatorname{as}) & b s=\text { Cons a }(\operatorname{apd} a s b s) \\
\text { apd } & (\text { and as } b s) c s=a p d ~ a s(\operatorname{apd} b s c s)
\end{array}
$$

- Just match against the constructors in Univ and add a default clause
- For rewrite rules, match against the function "constructors"
fun pd [C "Nil" [], bs] = bs
| pd [C "Cons" [a, as], bs] = C "Cons" [a, pd as bs]
apd [C "apd" [as, bs], cs] = apd [as, apd [bs, cs]]
| ap [as,
bs] = C "pd" [as ,bs]

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Models of ML-Terms and λ-Terms

We use de Bruijn indices.

Models of ML-Terms and λ-Terms

We use de Bruijn indices.
ML-terms consist of ML's λ-calculus

$$
\begin{aligned}
\mathrm{ml}= & \text { C cname } \\
& V \text { nat } \\
& \text { A ml }(\mathrm{ml} \text { list }) \\
& \text { Lam ml }
\end{aligned}
$$

Models of ML-Terms and λ-Terms

We use de Bruijn indices.
ML-terms consist of ML's λ-calculus + constructors

$$
\begin{aligned}
\mathrm{ml}= & \text { C cname } \\
& V \text { nat } \\
& \text { A } \mathrm{ml}(\mathrm{ml} \text { list }) \\
& \text { Lam ml } \\
& \text { C cname }(\mathrm{ml} \text { list }) \\
& \text { Var nat }(\mathrm{ml} \text { list }) \\
& \operatorname{Clo~} \mathrm{ml}(\mathrm{ml} \text { list }) \text { nat }
\end{aligned}
$$

Models of ML-Terms and λ-Terms

We use de Bruijn indices.
ML-terms consist of ML's λ-calculus + constructors + functions

$$
\begin{aligned}
& \mathrm{ml}= \text { C cname } \\
& \text { V nat } \\
& \text { A ml }(\mathrm{ml} \text { list }) \\
& \text { Lam ml } \\
& \text { C cname }(\mathrm{ml} \text { list }) \\
& \text { Var nat }(\mathrm{ml} \text { list }) \\
& \text { Clo } \mathrm{ml}(\mathrm{ml} \text { list }) \text { nat } \\
& \text { apply } \mathrm{ml} \mathrm{ml}
\end{aligned}
$$

Models of ML-Terms and λ-Terms

We use de Bruijn indices.
ML-terms consist of ML's λ-calculus + constructors + functions

$$
\begin{aligned}
& \mathrm{ml}= \text { C cname } \\
& \text { V nat } \\
& \text { A ml }(\mathrm{ml} \text { list }) \\
& \text { Lam ml } \\
& \text { C cname }(\mathrm{ml} \text { list }) \\
& \text { Var nat }(\mathrm{ml} \text { list }) \\
& \text { Clo } \mathrm{ml}(\mathrm{ml} \text { list }) \text { nat } \\
& \text { apply } \mathrm{ml} \mathrm{ml}
\end{aligned}
$$

Abstract λ-terms:

$$
t m=C \text { cname } \mid V \text { nat }|\mathrm{tm} \cdot \mathrm{tm}| \lambda t m
$$

Models of ML-Terms and λ-Terms

We use de Bruijn indices.
ML-terms consist of ML's λ-calculus + constructors + functions

$$
\begin{aligned}
& \mathrm{ml}= \text { C cname } \\
& \text { V nat } \\
& \text { A ml }(\mathrm{ml} \text { list }) \\
& \text { Lam ml } \\
& \text { C cname }(\mathrm{ml} \text { list }) \\
& \text { Var nat }(\mathrm{ml} \text { list }) \\
& \text { Clo } \mathrm{ml}(\mathrm{ml} \text { list }) \text { nat } \\
& \text { apply } \mathrm{ml} \mathrm{ml}
\end{aligned}
$$

Abstract λ-terms:

$$
t m=C \text { cname } \mid V \text { nat }|t m \cdot t m| \lambda t m \mid \text { term } \mathrm{ml}
$$

Reduction \rightarrow on pure λ-terms

Reduction \rightarrow on pure λ-terms

- β-reduction

Reduction \rightarrow on pure λ-terms

- β-reduction
- η-expansion

Reduction \rightarrow on pure λ-terms

- β-reduction
- η-expansion
- rewriting wrt $R::($ cname \times tm list $\times \mathrm{tm})$ set

Reduction \rightarrow on pure λ-terms

- β-reduction
- η-expansion
- rewriting wrt $R::($ cname \times tm list $\times \mathrm{tm})$ set

$$
\frac{(c, t s, t) \in R}{C c \bullet \operatorname{map}(\text { subst } \sigma) t s \rightarrow \text { subst } \sigma t}
$$

Reduction \rightarrow on pure λ-terms

- β-reduction
- η-expansion
- rewriting wrt $R::($ cname \times tm list \times tm $)$ set

$$
\frac{(c, t s, t) \in R}{C c \bullet \operatorname{map}(\text { subst } \sigma) t s \rightarrow \text { subst } \sigma t}
$$

where $t \bullet \cdot\left[t_{1}, \ldots, t_{n}\right]=t \bullet t_{1} \bullet \cdots \cdot t_{n}$

Reduction \Rightarrow on ML-terms

- β-reduction

Reduction \Rightarrow on ML-terms

- β-reduction
- rewriting wrt compR :: (cname $\times \mathrm{ml}$ list $\times \mathrm{ml})$ set

$$
\frac{(c, v s, v) \in R \quad \forall n . \operatorname{closed}(\sigma n)}{A(C c)(\text { map subst } \sigma) v s \Rightarrow \text { subst } \sigma v}
$$

Reduction \Rightarrow on ML-terms

- β-reduction
- rewriting wrt compR :: (cname $\times \mathrm{ml}$ list $\times \mathrm{ml})$ set

$$
\frac{(c, v s, v) \in R \quad \forall n . \text { closed }(\sigma n)}{A(C c)(\text { map subst } \sigma) v s \Rightarrow \text { subst } \sigma v}
$$

- Reductions for apply, eg

$$
\text { apply }(\mathrm{Clo} 0 f \text { vs) } v \Rightarrow A f(v s @[v])
$$

Reduction \Rightarrow on ML-terms

- β-reduction
- rewriting wrt compR :: $($ cname $\times \mathrm{ml}$ list $\times \mathrm{ml})$ set

$$
\frac{(c, v s, v) \in R \quad \forall n . \text { closed }(\sigma n)}{A(C c)(\text { map subst } \sigma) v s \Rightarrow \text { subst } \sigma v}
$$

- Reductions for apply, eg

$$
\text { apply (Clo } 0 f \text { vs) } v \Rightarrow A f(v s @[v])
$$

- Reductions for term, eg

$$
\begin{aligned}
& \text { term }(\text { Clo } f \text { vs } n) \Rightarrow \\
& \lambda(\text { term }(\text { apply }(\text { lift } 0(\text { Clo } f \text { vs } n))(\operatorname{Var} 0[])))
\end{aligned}
$$

Compilation from λ-Terms to ML-terms

Two variants:

Compilation from λ-Terms to ML-terms

Two variants:

- comp-fixed for compiling a term to be reduced

Compilation from λ-Terms to ML-terms

Two variants:

- comp-fixed for compiling a term to be reduced Treats variables as fixed: $V \mapsto \operatorname{Var}$

Compilation from λ-Terms to ML-terms

Two variants:

- comp-fixed for compiling a term to be reduced Treats variables as fixed: $V \mapsto \operatorname{Var}$
- comp-open for compiling rewrite rules

Compilation from λ-Terms to ML-terms

Two variants:

- comp-fixed for compiling a term to be reduced Treats variables as fixed: $V \mapsto \operatorname{Var}$
- comp-open for compiling rewrite rules Treats variables as open: $V \mapsto V$

Compilation from λ-Terms to ML-terms

Two variants:

- comp-fixed for compiling a term to be reduced Treats variables as fixed: $V \mapsto \operatorname{Var}$
- comp-open for compiling rewrite rules Treats variables as open: $V \mapsto V$

Rule compilation:

$$
\operatorname{comp} R=\ldots \text { comp-open } \ldots R \ldots
$$

Main Correctness Theorem

Main Correctness Theorem

$$
\text { If } t \text { and } t^{\prime} \text { are pure } \lambda \text {-terms (no term) }
$$

Main Correctness Theorem

$$
\begin{aligned}
& \text { If } t \text { and } t^{\prime} \text { are pure } \lambda \text {-terms (no term) } \\
& \text { and term(comp-fixed } t) \Rightarrow^{*} t^{\prime}
\end{aligned}
$$

Main Correctness Theorem

> If t and t^{\prime} are pure λ-terms (no term)
> and term $($ comp-fixed $t) \Rightarrow^{*} t^{\prime}$
then $t \rightarrow^{*} t^{\prime}$

Statistics

Statistics

Size of theory:
1100 loc

Statistics

Size of theory:
Definitions:

1100 loc
30\%

Statistics

Size of theory:
Definitions:
Proofs about substitutions: 30\%

Statistics

Size of theory: $\quad 1100$ loc
Definitions:
30\%
Proofs about substitutions: 30\%
Main proof: 40%

Implementation

Implementation

- Builds on Isabelle's code generation infrastructure

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc
- Does not perform proofs,

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc
- Does not perform proofs, hence verification

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc
- Does not perform proofs, hence verification
- Typical performance figures:

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc
- Does not perform proofs, hence verification
- Typical performance figures: $100 \times$ faster than simplifier

Implementation

- Builds on Isabelle's code generation infrastructure
- 475 loc
- Does not perform proofs, hence verification
- Typical performance figures:
$100 \times$ faster than simplifier
$10 \times$ slower than direct compilation to ML

Untyped Normalization by Evaluation

Formalisation in Isabelle

Related and Future Work

Related Work

Related Work

Berger, Eberl \& Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension

Related Work

Berger, Eberl \& Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension
Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL

Related Work

Berger, Eberl \& Schwichtenberg [98/03]
Compiled NbE in Scheme/MINLOG
Kernel extension
Barras [TPHOLs 00]
Abstract machine for fast rewriting by inference in HOL
Grégoire \& Leroy [ICFP 02]
Abstract machine for fast normalization in Coq
Kernel extension
Verified

Future Work

Generalize:

Future Work

Generalize:

- Repeated variables on Ihs

Future Work

Generalize:

- Repeated variables on Ihs
- Ordered rewriting for permutative rules

Future Work

Generalize:

- Repeated variables on Ihs
- Ordered rewriting for permutative rules
- Conditional rewriting?

Future Work

Generalize:

- Repeated variables on Ihs
- Ordered rewriting for permutative rules
- Conditional rewriting?

