Bazel
[o]e]

How Bazel Works Extending Bazel
o]
0000

00000

Summary

Bazel

{fast, correct} — choose two

Klaus Aehlig

August 19-20, 2017

Bazel
L1

What is Bazel?

How Bazel Works
o
0000

Bazel

Extending Bazel
00000

Summary

Bazel How Bazel Works Extending Bazel Summary

e0 [e] 00000 [e]
0000 [e]

Bazel

What is Bazel?

e Bazel is a build tool
l.e., organizes compiling/creating
artifacts (libraries, executables, ...) from sources.

Bazel How Bazel Works Extending Bazel Summary

00000 [e]
[e]

[1o} [e]
0000

Bazel

What is Bazel?

e Bazel is a build tool
l.e., organizes compiling/creating
artifacts (libraries, executables, ...) from sources.
e open-source since 2015

Bazel How Bazel Works Extending Bazel Summary

00000 [e]
[e]

[1o} [e]
0000

Bazel

What is Bazel?

e Bazel is a build tool
l.e., organizes compiling/creating
artifacts (libraries, executables, ...) from sources.
e open-source since 2015
e ...but a longer (a decade) history as a Google-internal tool

Bazel
oe

How Bazel Works
o]
0000

Extending Bazel
00000

Bazel

Summary

What is Bazel? And why yet another *make?

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules

Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules

e generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel

(e} [] 00000
0000

An Example

Let's look at a helloworld example.

Summary

[e]
[e]

Bazel How Bazel Works Extending Bazel Summary

(e} [] 00000 [e]
0000 [e]

An Example

e main program helloworld.c helloworld.c

How Bazel Works
[]

An Example

e main program helloworld.c helloworld.c

#include "lib/hello.h"

int main(int argc, char **argv) {
greet ("world") ;
return O;

}

How Bazel Works
[]

An Example

e main program helloworld.c,

depending on a library helloworld.c

How Bazel Works
[]

An Example

main program helloworld.c,
depending on a library
a library with headers (1ib/hello.h)

helloworld.c
lib

| hello.h

#ifndef HELLO_H
#define HELLO_H

void greet(char *);

#endif

How Bazel Works
[]

An Example

e main program helloworld.c,

. . | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c)
| hello.h
#include "hello.h" | hello.c

#include <stdio.h>

void greet(char *it) {
printf ("Hello %s!", it);

}

How Bazel Works
[]

An Example

e main program helloworld.c,

. . | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c)
| hello.h
| hello.c

How Bazel Works
[]

An Example
P | WORKSPACE
e main program helloworld.c,
depending on a library S E‘S”OWOHd-C

e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

e then we can have an empty WORKSPACE file |— hello.h
| hello.c

How Bazel Works
[]

An Example

| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary(cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),

))

How Bazel Works
[]

An Example

| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary(cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),
))

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.

How Bazel Works
[]

An Example

| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary(cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),

))

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
@000 [e]

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
@000 [e]

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)

Bazel How Bazel Works nding Bazel Summary

€000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)
e analyze dependencies between targets

How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)
e analyze dependencies between targets
e from rules generate action graph

How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
o] lee] [e]

Example cont'd: Dependencies

Now let's see what happens if we want to build :helloworld. ..

command

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
o] lee] [e]

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

We look at the target :helloworld

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
o] lee] [e]

Example cont'd: Dependencies

() ——» [helloworld | ——= [build /zhelloworid

We look at the target :helloworld, in package //

g8

-

gl
E

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
o] lee] [e]

Example cont'd: Dependencies

() ——» [helloworld | ——= [build /zhelloworid

We look at the target :helloworld, in package //, in file BUILD

Bazel How Bazel Works Extending Bazel Summary
00000 o]
o]

(e} [e]
o] lee]

Example cont'd: Dependencies

() ———» [helloworld_| ——= [build /-helloworid

/ib:hello

Two declared dependencies

How Bazel Works Extending Bazel Summary

Bazel

Example cont'd: Dependencies

() ———» [helloworld_| ——= [build /-helloworid

/ib:hello

Two declared dependencies

command

and implicit dependency on the C tool chain ot
(not drawn in this diagram) =

How Bazel Works

o] lee]

Example cont'd: Dependencies

() ———» [helloworld_| ——= [build /-helloworid

] @ []

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

8
2
3
H
a

S

53
e

Bazel How Bazel Works Extending Bazel Summary

0000

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

BUILD
[
—a glob[" \
[Bu | —» //nb —

We discover glob expressions

command

target

le system

How Bazel Works

o] lee]

Example cont'd: Dependencies

[#:nefloworld | ——= [build /helloworld

(glob([**.h")

-\"M\

BUILD — //Ilb — | //lib:hello

We discover glob expressions, and read the directory.

command

target

How Bazel Works

o] lee]

Example cont'd: Dependencies

| //helloworld | — | build //:helloworld

BUILD — //I|b —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}
The rules tell us, which artifacts to build.

command

target

artifact

How Bazel Works

Example cont'd: Dependencies

- helloworld.pic.0 =———————p helloworld

[feloc | ————— libthello.pic.o —libiibhello.{a,so}

artifact

How Bazel Works

o] lee]

Example cont'd: Dependencies

| //helloworld | — | build //:helloworld

BUILD — //I|b —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}

command

target

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | — | build //:helloworld

BUILD — //I|b —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}

command

target

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | — | build //:helloworld

E heIIoworId pic.o heIIoworId

o, G
—a glob[" \
//Ilbhello

BUILD — //I|b —_—

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}

command

target

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | — | build //:helloworld

E heIIoworId pic.o heIIoworId

-
—a glob[" \
//Ilbhello

BUILD — //I|b —_—

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}

command

target

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | —> | build //:helloworld

Ijl heIIoworId pic.o heIIoworId

o
—a glob[<" \
//Ilbhello

BUILD — //I|b —_—

[relloc | ———— litthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

le system

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | —> | build //:helloworld

Ijl heIIoworId pic.o heIIoworId

—
—a glob[" \
//Ilbhello

BUILD — //I|b —_—

[relloc | ———— litthello.pic.o —~ I|bl||bhe||o.{a,so}

command

target

le system

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | —> | build //:helloworld

Ijl heIIoworId pic.o heIIoworId

—
—a glob[" \
//Ilbhello

BUILD — //I|b —_—

- —_— » libhello.pic.o —p I|bl||bhe||o {a,s0}

=

lib/foo.pic.o

command

target

le system

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | — | build //:helloworld

BUILD — //I|b —_—

Ijl heIIoworId pic.o heIIoworId
o, G
—~ (@) \
//|Ib hello

- —_— » libhello.pic.o —p I|bl||bhe||o {a,s0}

=

lib/foo.pic.o

command

target

artifact

How Bazel Works

ooceo

Example cont'd: Adding a File

| //helloworld | — | build //:helloworld

BUILD — //|Ib —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello

- —_— » libhello.pic.o —p I|bl||bhello {a,s0}

=

lib/foo.pic.o

command

target

artifact

(O @ (=»

«E»

Q>

Bazel How Bazel Works Extending Bazel

(e} [e] 00000
oooe

Actions

e action do the actual work of building

Summary

[e]
[e]

Bazel How Bazel Works Extending Bazel

0o00e

Actions

e action do the actual work of building
... and hence take the most time

Summary

How Bazel Works

oooe

Actions

e action do the actual work of building
... and hence take the most time
~» particularly interesting to avoid unnecessary actions

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions

e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel
e so, no .done_foo targets,
e and only reading declared inputs

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment

e only declared inputs/tools present
e only declared outputs copied out

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment
e only declared inputs/tools present
e only declared outputs copied out
e depending on OS, different approaches
(none, temp dir, chroot, ...)

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”

How Bazel Works

oooe

Actions

e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”
e bonus: remote execution

How Bazel Works

oooe

Actions

action do the actual work of building

...and hence take the most time

particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel

facilitate correct |/O by running actions in “sandboxes”
bonus: remote execution

= enables shared caches.

(Several close-by engineers working on the same code base!)

Skylark

(O @ (=»

«E»

Q>

Bazel How Bazel Works Extending Bazel

(e} [e] @0000
0000

Skylark

e Bazel has built-in rules

Summary

[e]
[e]

Extending Bazel
00000

Skylark

e Bazel has built-in rules
o specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

Extending Bazel
00000

Skylark

e Bazel has built-in rules
o specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule
— just specify a shell command (with $@, $<, ...)
(basically the only rule available in a Makefile)

Bazel How Bazel Works Extending Bazel

(e} [e] @0000
0000

Skylark

e Bazel has built-in rules

Summary

[e]
[e]

Bazel How Bazel Works Extending Bazel Summary
©0000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
o Python-like language (familiar syntax)
e but restricted to a simple core
without global state, complicated feature, . ..

~ deterministic, hermetic evaluation

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark

Extending Bazel
00000

Skylark

e Bazel has built-in rules

e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark

e To get a feeling for the language, let's do an example

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX
e typeset pdf files from textual description (x.tex files)

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX

e typeset pdf files from textual description (x.tex files)
e the *.tex files can pull in other files
(.sty, images, diagrams, \input other .tex-files)

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX

e typeset pdf files from textual description (x.tex files)
e the *.tex files can pull in other files

(.sty, images, diagrams, \input other .tex-files)
e pdflatex main.tex && ...

Extending Bazel
00000

Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX

(O @ (=»

«E»

Q>

Bazel How Bazel Works Extending Bazel

(e} [e] 0@e000
0000

Macros

e First approach

Summary

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 0O@000 [e]
0000 [e]

Macros

e First approach
e latex-rule is given by an entry point and a list of source files

Extending Bazel
0e000

Macros

e First approach
e latex-rule is given by an entry point and a list of source files
e have a script to typeset this
(tmpdir, correct number of pdflatex runs, ...)

Bazel How Bazel Works Extending Bazel

(e} [e] 0O@000
0000

Macros
e First approach (entry + files; script)

Summary

[e]
[e]

Extending Bazel
0e000

Macros

e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
run = str(Label("//rules/latex:runlatex.sh"))
native.genrule (
name = name + "_pdf",
srcs = srcs,
cmd = ("sh $(location " + run +") $@"
+ " $(location " + main + ") $(SRCS)",
outs = [name + ".pdf"],
tools = [run],

Extending Bazel
0e000

Macros

e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

native.genrule(...)

Extending Bazel
0e000

Macros

e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

e can be loaded in BUILD files

Extending Bazel
0e000

Macros

e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

e can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

Extending Bazel
0e000

Macros

e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

e can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(
name = "slides",
main = "main.tex",
srcs = ["diagram.ps"],

Extending Bazel
0e000

Macros

First approach (entry + files; script)
write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(
name = "slides",
main = "main.tex",
srcs = ["diagram.ps"],
)

central maintenance; convenience-targets (xpdf, pdfnup, ...

File Groups

(O @ (=»

«E»

Q>

Bazel How Bazel Works Extending Bazel

(e} [e] [e]e] le]e}
0000

File Groups
e Start thinking in groups of files

Summary

[e]
[e]

Bazel How Bazel Works Extending Bazel Summary
00 fe 00000 o

File Groups

e Start thinking in groups of files
“That slide with all the diagrams belonging to it”

Bazel How Bazel Works Extending Bazel

(e} [e] [e]e] le]e}
0000

File Groups
e Start thinking in groups of files

Summary

[e]
[e]

Extending Bazel
00e00

File Groups

e Start thinking in groups of files
e Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

Extending Bazel
00e00

File Groups

e Start thinking in groups of files
e Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",
srcs = ["barchapter.tex", ":foosection", ...])

e Gives a label to a set of files (with traversal order)
~> single maintenance point

Extending Bazel
00e00

File Groups

Start thinking in groups of files
Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",
srcs = ["barchapter.tex", ":foosection", ...])

Gives a label to a set of files (with traversal order)
~ single maintenance point

Can be nested, inserting the entries

(but implemented in a memory-efficient way!)

Rules

«or Fr o«

[
v
a
It

Q>

Bazel How Bazel Works Extending Bazel Summary

(e} [e] [e]e]e] lo} [e]
0000 [e]

Rules

e Next: missing argument checking, argv limits

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

latex = rule(

attrs = {
"main" : attr.label(allow_files=True),
"srcs" : attr.label_ list(allow_files=True),
"_runlatex": attr.label(

cfg="host", allow_files=True,

default = Label("//rules/latex:runlatex.sh")),
b
outputs = {"pdf" : "Y{name}.pdf"},
implementation = _latex_impl,

)

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
inputs_file = ctx.new file(
ctx.label.name + ".allinputs")
ctx.file_action(
inputs_file,
"\n".join([f.path for f in inputs])

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

ctx.file_action(...)

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

ctx.file_action(...)

output = ctx.new file(ctx.label.name + ".pdf")

args = [f.path for f in ctx.files._runlatex] \
+ [output.path] \
+ [f.path for f in ctx.files.main[:1]] \
+ [inputs_file.path]

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):
ctx.file_action(...)

output = ctx.new file(ctx.label.name + ".pdf")
args = ...

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args = ...

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args = ...
ctx.action(

inputs = list(inputs | depset([inputs_filel)

| depset(ctx.files. runpdflatex))

outputs = [output],

command = ["/bin/sh"] + args,

mnemonic = "PdfLatex",

progress _message = "Typesetting %s as pdf" \

% ctx.label,

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args =
ctx.action(...)

Extending Bazel
00080

Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args =
ctx.action(...)

e Additional benefits
e Proper quoting for free
e Meaningful progress messages

Providers

(O @ (=»

«E»

Q>

Bazel How Bazel Works Extending Bazel

(e} [e] [e]e]e]e] }
0000

Providers

e Start to collect macro definitions

Summary

[e]
[e]

Bazel How Bazel Works Extending Bazel Summary

(e} [e] [e]e]e]e] } [e]
0000 [e]

Providers

e Start to collect macro definitions, organized in file groups

Bazel How Bazel Works Extending Bazel Summary
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group. ..

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action is simple

includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action

includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))

Using this new file implicitly depends on the sources!

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]
Using this new file implicitly depends on the sources!

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]
Using this new file implicitly depends on the sources!

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider

def _includefile_impl(ctx):

return [LtxInfo(refd = depset([output]) |deps)]

Extending Bazel
0000e

Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]

Extending Bazel
0000e

Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)

Extending Bazel
0000e

Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
for i in ctx.attr.srcs:
if LtxInfo in i:
inputs = inputs | i[LtxInfo].refd

Extending Bazel
0000e

Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
for i in ctx.attr.srcs:
if LtxInfo in i:
inputs = inputs | i[LtxInfo].refd

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 []
0000 [e]

Summary

declarative BUILD files

generic tool: can bring your own rules
(Python-like extension language; can start easy)

all dependencies tracked ~~ correctness
(sandboxes to ensure all /0 is known)

full knowledge enables fast builds
(caching of actions, remote execution, parallelism, ...)

® open-source

Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
0000 o

Try Bazel

Try Bazel yourself.

e Homepage https://bazel.build/
Mailing lists
e bazel-discuss@googlegroups.com
e bazel-dev@googlegroups.com

Repository and issue tracker
https://github.com/bazelbuild/bazel

IRC #bazel on irc.freenode.net

Release key fingerprint
71A1 DOEF CFEB 6281 FD04 37C9 3D59 19B4 4845 T7EEO

Thanks for your attention. Questions?

https://bazel.build/
https://github.com/bazelbuild/bazel

	Bazel
	What is Bazel?

	How Bazel Works
	Example of a BUILD File
	bazel build

	Extending Bazel
	Extending Bazel

	Summary
	Summary
	Getting Bazel

