
Bazel How Bazel Works Extending Bazel Summary

Bazel
{fast, correct} – choose two

Klaus Aehlig

August 19–20, 2017

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel?

• Bazel is a build tool
I.e., organizes compiling/creating
artifacts (libraries, executables, . . .) from sources.

• open-source since 2015
• . . . but a longer (a decade) history as a Google-internal tool

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel?

• Bazel is a build tool
I.e., organizes compiling/creating
artifacts (libraries, executables, . . .) from sources.

• open-source since 2015
• . . . but a longer (a decade) history as a Google-internal tool

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel?

• Bazel is a build tool
I.e., organizes compiling/creating
artifacts (libraries, executables, . . .) from sources.

• open-source since 2015

• . . . but a longer (a decade) history as a Google-internal tool

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel?

• Bazel is a build tool
I.e., organizes compiling/creating
artifacts (libraries, executables, . . .) from sources.

• open-source since 2015
• . . . but a longer (a decade) history as a Google-internal tool

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism

• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching

• . . . without losing correctness
(i.e., all artifacts as if freshly built from source)

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)

• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

Bazel

What is Bazel? And why yet another *make?

• Scales to large repos with complex dependencies
(e.g., 104.5 engineers working on 107 files)

• aggressive parallelism
• aggressive caching
• . . . without losing correctness

(i.e., all artifacts as if freshly built from source)
• declarative style of BUILD files

• separation of concerns
writing code vs choosing correct (cross) compiling strategy

• central maintenance point for build rules

• generic tool
Can bring your own declarative rules for BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

Let’s look at a helloworld example.

• main program helloworld.c

,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c
• main program helloworld.c

,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c
• main program helloworld.c

,
depending on a library

#include "lib/hello.h"

int main(int argc, char **argv) {
greet("world");

return 0;

}

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c
• main program helloworld.c,

depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)

. . . and implementation (lib/hello.c)

#ifndef HELLO H

#define HELLO H

void greet(char *);

#endif

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

#include "hello.h"

#include <stdio.h>

void greet(char *it) {
printf("Hello %s!", it);

}

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file

. . . and the following declarative BUILD files

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.

Bazel How Bazel Works Extending Bazel Summary

An Example

helloworld.c

lib

hello.h

hello.c

WORKSPACE

BUILD

BUILD

• main program helloworld.c,
depending on a library

• a library with headers (lib/hello.h)
. . . and implementation (lib/hello.c)

• then we can have an empty WORKSPACE file
. . . and the following declarative BUILD files

cc binary(

name="helloworld",

srcs=["helloworld.c"],

deps=["//lib:hello"],

)

cc library(

name="hello",

srcs=glob(["*.c"]),

hdrs=glob(["*.h"]),

)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)

• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets

• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph

• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?

• load the BUILD files (all that are needed)
• analyze dependencies between targets
• from rules generate action graph
• execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld

command

Now let’s see what happens if we want to build :helloworld. . .

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld

command

target

We look at the target :helloworld

, in package //, in file BUILD

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//

command

target

pkg

We look at the target :helloworld, in package //

, in file BUILD

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

command

target

pkg

file system

We look at the target :helloworld, in package //, in file BUILD

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

command

target

pkg

file system

Two declared dependencies

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

command

target

pkg

file system

Two declared dependencies

. . . and implicit dependency on the C tool chain
(not drawn in this diagram)

, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

command

target

pkg

file system

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

command

target

pkg

file system

glob

We discover glob expressions

, and read the directory.

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

command

target

pkg

file system

glob

We discover glob expressions, and read the directory.

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artifact

The rules tell us, which artifacts to build.

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

BUILD

helloworld.c

lib/

BUILD

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

file system

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Dependencies

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Example cont’d: Adding a File

build //:helloworld//:helloworld//BUILD

//lib:hello

helloworld.c

//lib

lib/

BUILD

glob(["*.c"])

glob(["*.h"])

hello.c

hello.h

lib/libhello.{a,so}lib/hello.pic.o

helloworldhelloworld.pic.o

foo.c lib/foo.pic.o

command

target

pkg

file system

glob

artifact

Bazel How Bazel Works Extending Bazel Summary

Actions

• action do the actual work of building

. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time

 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed

• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

• so, no .done foo targets,
• and only reading declared inputs

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”

• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• isolated environment

• only declared inputs/tools present
• only declared outputs copied out

• depending on OS, different approaches
(none, temp dir, chroot, . . .)

• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• isolated environment

• only declared inputs/tools present
• only declared outputs copied out

• depending on OS, different approaches
(none, temp dir, chroot, . . .)

• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”

• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution

⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Actions
• action do the actual work of building

. . . and hence take the most time
 particularly interesting to avoid unnecessary actions

• dependency graph shows if prerequisites changed
• caching of input/output-relation itself

! requires all inputs/outputs to be known to bazel

 facilitate correct I/O by running actions in “sandboxes”
• bonus: remote execution
⇒ enables shared caches.
(Several close-by engineers working on the same code base!)

Bazel How Bazel Works Extending Bazel Summary

Skylark

• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules

• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule
→ just specify a shell command (with $@, $<, . . .)
(basically the only rule available in a Makefile)

• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules

• specialized rules with knowledge about certain languages
cc library, cc binary, java library, java binary, . . .

• generic ones, in particular genrule
→ just specify a shell command (with $@, $<, . . .)
(basically the only rule available in a Makefile)

• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules

• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale

 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark

• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark

• Python-like language (familiar syntax)
• but restricted to a simple core

without global state, complicated feature, . . .
 deterministic, hermetic evaluation

• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark

• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX
• typeset pdf files from textual description (*.tex files)

• the *.tex files can pull in other files
(.sty, images, diagrams, \input other .tex-files)

• pdflatex main.tex && ...

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX
• typeset pdf files from textual description (*.tex files)
• the *.tex files can pull in other files

(.sty, images, diagrams, \input other .tex-files)

• pdflatex main.tex && ...

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX
• typeset pdf files from textual description (*.tex files)
• the *.tex files can pull in other files

(.sty, images, diagrams, \input other .tex-files)
• pdflatex main.tex && ...

Bazel How Bazel Works Extending Bazel Summary

Skylark
• Bazel has built-in rules
• but adding specialized rule for every language doesn’t scale
 need ways to expend BUILD language: Skylark
• To get a feeling for the language, let’s do an example

. . . and step by step develop rules for LATEX

Bazel How Bazel Works Extending Bazel Summary

Macros

• First approach

(entry + files; script)

 write a macro in rules/latex/latex.bzl

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach

(entry + files; script)
 write a macro in rules/latex/latex.bzl

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach

(entry + files; script)

• latex-rule is given by an entry point and a list of source files

• have a script to typeset this
(tmpdir, correct number of pdflatex runs, . . .)

 write a macro in rules/latex/latex.bzl

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach

(entry + files; script)

• latex-rule is given by an entry point and a list of source files
• have a script to typeset this

(tmpdir, correct number of pdflatex runs, . . .)

 write a macro in rules/latex/latex.bzl

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)

 write a macro in rules/latex/latex.bzl

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

run = str(Label("//rules/latex:runlatex.sh"))

native.genrule(

name = name + " pdf",

srcs = srcs,

cmd = ("sh $(location " + run +") $@"

+ " $(location " + main + ") $(SRCS)",

outs = [name + ".pdf"],

tools = [run],

)

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

...

native.genrule(...)

• can be loaded in BUILD files
 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

...

native.genrule(...)

• can be loaded in BUILD files

 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

...

native.genrule(...)

• can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

...

native.genrule(...)

• can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(

name = "slides",

main = "main.tex",

srcs = ["diagram.ps"],

)

 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

Macros
• First approach (entry + files; script)
 write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

...

native.genrule(...)

• can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(

name = "slides",

main = "main.tex",

srcs = ["diagram.ps"],

)

 central maintenance; convenience-targets (xpdf, pdfnup, . . .)

Bazel How Bazel Works Extending Bazel Summary

File Groups

• Start thinking in groups of files
• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files

• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files

“That slide with all the diagrams belonging to it”

• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files

• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files
• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files
• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

File Groups
• Start thinking in groups of files
• Built-in rule: filegroup

filegroup(name = "foosection",

srcs = ["foosection.tex", ":diagram"])

...

filegroup(

name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])

• Gives a label to a set of files (with traversal order)
 single maintenance point

• Can be nested, inserting the entries
(but implemented in a memory-efficient way!)

Bazel How Bazel Works Extending Bazel Summary

Rules

• Next: missing argument checking, argv limits

 Rules
(also changing the script, now expecting an arguments file)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits

 Rules
(also changing the script, now expecting an arguments file)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

latex = rule(

attrs = {
"main" : attr.label(allow files=True),

"srcs" : attr.label list(allow files=True),

" runlatex": attr.label(

cfg="host", allow files=True,

default = Label("//rules/latex:runlatex.sh")),

},
outputs = {"pdf" : "%{name}.pdf"},
implementation = latex impl,

)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

inputs = depset(ctx.files.srcs) \

| depset(ctx.files.main)

inputs file = ctx.new file(

ctx.label.name + ".allinputs")

ctx.file action(

inputs file,

"\n".join([f.path for f in inputs])

)

...

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

ctx.file action(...)

...

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

ctx.file action(...)

output = ctx.new file(ctx.label.name + ".pdf")

args = [f.path for f in ctx.files. runlatex] \

+ [output.path] \

+ [f.path for f in ctx.files.main[:1]] \

+ [inputs file.path]

...

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

ctx.file action(...)

output = ctx.new file(ctx.label.name + ".pdf")

args = ...

...

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

args = ...

...

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

args = ...

ctx.action(

inputs = list(inputs | depset([inputs file])

| depset(ctx.files. runpdflatex)),

outputs = [output],

command = ["/bin/sh"] + args,

mnemonic = "PdfLatex",

progress message = "Typesetting %s as pdf" \

% ctx.label,

)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

args = ...

ctx.action(...)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Rules
• Next: missing argument checking, argv limits Rules

(also changing the script, now expecting an arguments file)

def latex impl(ctx):

...

args = ...

ctx.action(...)

• Additional benefits
• Proper quoting for free
• Meaningful progress messages

Bazel How Bazel Works Extending Bazel Summary

Providers

• Start to collect macro definitions

, organized in file groups

• Want to \input such a file group. . .
• file action

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions

, organized in file groups
• Want to \input such a file group. . .
• file action

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups

• Want to \input such a file group. . .
• file action

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .

• file action

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action is simple

LtxInfo = provider()

includefile = rule(...)

def includefile impl(ctx):

output = ctx.new file(ctx.label.name + ".tex")

deps = depset(ctx.files.srcs)

includes = ["\\input{%s}\n" % f.short path

for f in deps]

ctx.file action(output = output,

content = "".join(includes))

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action

LtxInfo = provider()

includefile = rule(...)

def includefile impl(ctx):

output = ctx.new file(ctx.label.name + ".tex")

deps = depset(ctx.files.srcs)

includes = ["\\input{%s}\n" % f.short path

for f in deps]

ctx.file action(output = output,

content = "".join(includes))

return [LtxInfo(refd = depset([output])|deps)]

Using this new file implicitly depends on the sources!

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
LtxInfo = provider()

includefile = rule(...)

def includefile impl(ctx):

output = ctx.new file(ctx.label.name + ".tex")

deps = depset(ctx.files.srcs)

includes = ["\\input{%s}\n" % f.short path

for f in deps]

ctx.file action(output = output,

content = "".join(includes))

return [LtxInfo(refd = depset([output])|deps)]

Using this new file implicitly depends on the sources!

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
LtxInfo = provider()

includefile = rule(...)

def includefile impl(ctx):

output = ctx.new file(ctx.label.name + ".tex")

deps = depset(ctx.files.srcs)

includes = ["\\input{%s}\n" % f.short path

for f in deps]

ctx.file action(output = output,

content = "".join(includes))

return [LtxInfo(refd = depset([output])|deps)]

Using this new file implicitly depends on the sources!

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
LtxInfo = provider()

includefile = rule(...)

def includefile impl(ctx):

output = ctx.new file(ctx.label.name + ".tex")

deps = depset(ctx.files.srcs)

includes = ["\\input{%s}\n" % f.short path

for f in deps]

ctx.file action(output = output,

content = "".join(includes))

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider

...

def includefile impl(ctx):

...

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
def includefile impl(ctx):

...

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
def includefile impl(ctx):

...

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

def latex impl(ctx):

inputs = depset(ctx.files.srcs) \

| depset(ctx.files.main)

for i in ctx.attr.srcs:

if LtxInfo in i:

inputs = inputs | i[LtxInfo].refd

...

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
def includefile impl(ctx):

...

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

def latex impl(ctx):

inputs = depset(ctx.files.srcs) \

| depset(ctx.files.main)

for i in ctx.attr.srcs:

if LtxInfo in i:

inputs = inputs | i[LtxInfo].refd

...

Bazel How Bazel Works Extending Bazel Summary

Providers
• Start to collect macro definitions, organized in file groups
• Want to \input such a file group. . .
• file action plus provider
def includefile impl(ctx):

...

return [LtxInfo(refd = depset([output])|deps)]

• Consuming rules can use it

def latex impl(ctx):

inputs = depset(ctx.files.srcs) \

| depset(ctx.files.main)

for i in ctx.attr.srcs:

if LtxInfo in i:

inputs = inputs | i[LtxInfo].refd

...

Bazel How Bazel Works Extending Bazel Summary

Summary

• declarative BUILD files

• generic tool: can bring your own rules
(Python-like extension language; can start easy)

• all dependencies tracked correctness
(sandboxes to ensure all I/O is known)

• full knowledge enables fast builds
(caching of actions, remote execution, parallelism, . . .)

• open-source

Bazel How Bazel Works Extending Bazel Summary

Try Bazel

Try Bazel yourself.

• Homepage https://bazel.build/

• Mailing lists
• bazel-discuss@googlegroups.com
• bazel-dev@googlegroups.com

• Repository and issue tracker
https://github.com/bazelbuild/bazel

• IRC #bazel on irc.freenode.net

• Release key fingerprint
71A1 D0EF CFEB 6281 FD04 37C9 3D59 19B4 4845 7EE0

Thanks for your attention. Questions?

https://bazel.build/
https://github.com/bazelbuild/bazel

	Bazel
	What is Bazel?

	How Bazel Works
	Example of a BUILD File
	bazel build

	Extending Bazel
	Extending Bazel

	Summary
	Summary
	Getting Bazel

