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What is Bazel?

e Bazel is a build tool
l.e., organizes compiling/creating
artifacts (libraries, executables, ... ) from sources.
e open-source since 2015
e ...but a longer (a decade) history as a Google-internal tool
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Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules




Bazel How Bazel Works Extending Bazel Summary

oe [e] 00000 [e]
0000 [e]

Bazel

What is Bazel? And why yet another *make?

e Scales to large repos with complex dependencies
(e.g., 10*° engineers working on 107 files)
e aggressive parallelism
e aggressive caching
e ... without losing correctness
(i.e., all artifacts as if freshly built from source)
e declarative style of BUILD files
e separation of concerns
writing code vs choosing correct (cross) compiling strategy
e central maintenance point for build rules

e generic tool
Can bring your own declarative rules for BUILD files
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e main program helloworld.c helloworld.c

#include "lib/hello.h"

int main(int argc, char **argv) {
greet ("world") ;
return O;

}
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An Example

main program helloworld.c,
depending on a library
a library with headers (1ib/hello.h)

helloworld.c
lib

| hello.h

#ifndef HELLO_H
#define HELLO_H

void greet(char *);

#endif
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An Example

e main program helloworld.c,

. . | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c)
| hello.h
#include "hello.h" | hello.c

#include <stdio.h>

void greet(char *it) {
printf ("Hello %s!", it);

}
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e main program helloworld.c,

. . | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c)
| hello.h
| hello.c
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e a library with headers (1ib/hello.h)
. and implementation (1ib/hello.c)

e then we can have an empty WORKSPACE file  |— hello.h
| hello.c
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| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary( cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),

) )
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| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary( cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),
) )

Note: CC, link options, host/target architecture, etc,
taken care of elsewhere.



How Bazel Works
[ ]

An Example

| WORKSPACE
. L BUILD
e main pr.ogram hglloworld.c, | helloworld.c
depending on a library .
e a library with headers (1ib/hello.h) lib
. and implementation (1ib/hello.c) —— BUILD
o then we can have an empty WORKSPACE file ~ |—— hello.h
. and the following declarative BUILD files L__ hello.c
cc_binary( cc_library(
name="helloworld", name="hello",
srcs=["helloworld.c"], srcs=glob(["*.c"]),
deps=["//1ib:hello"], hdrs=glob(["*.h"]),

) )



Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
@000 [e]

Overview of a bazel build

Have declarative descriptions. What happens at bazel build?



Bazel How Bazel Works Extending Bazel Summary

(e} [e] 00000 [e]
@000 [e]

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)



Bazel How Bazel Works nding Bazel Summary

€000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)
e analyze dependencies between targets



How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

e load the BUILD files (all that are needed)
e analyze dependencies between targets
e from rules generate action graph



How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)



How Bazel Works

@000

Overview of a bazel build
Have declarative descriptions. What happens at bazel build?

load the BUILD files (all that are needed)
analyze dependencies between targets
from rules generate action graph

execute actions (unless already cached)

on subsequent builds, update the graphs
(client-server architecture to keep graph in memory)
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Now let's see what happens if we want to build :helloworld. ..

command
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() ——» [helloworld | ——= [ build /zhelloworid

We look at the target :helloworld, in package //, in file BUILD
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Example cont'd: Dependencies

() ———» [helloworld_| ——= [ build /-helloworid

/ib:hello

Two declared dependencies

command

and implicit dependency on the C tool chain ot
(not drawn in this diagram) =
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() ———» [helloworld_| ——= [ build /-helloworid

] @ [ ]

Two declared dependencies, one in a different package
Note: We construct dependency graph over package boundaries!
(no recursive calling)
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[ #:nefloworld | ——= [ build /helloworld

BUILD
[
—a glob[ " \
[Bu | —» //nb —

We discover glob expressions

command

target

le system
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Example cont'd: Dependencies

[ #:nefloworld | ——= [ build /helloworld

(glob([**.h")

-\"M\

BUILD — //Ilb — | //lib:hello

We discover glob expressions, and read the directory.

command

target
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| //helloworld | — | build //:helloworld

BUILD — //I|b —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello

[relloc | ———— litthello.pic.o —~ I|bl||bhello.{a,so}
The rules tell us, which artifacts to build.

command

target

artifact
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| //helloworld | — | build //:helloworld

BUILD — //|Ib —_—

E heIIoworId pic.o heIIoworId
-
—~ (@) \
//|Ib hello
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lib/foo.pic.o
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target
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e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions

e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel
e so, no .done_foo targets,
e and only reading declared inputs
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e action do the actual work of building
...and hence take the most time
~» particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself
I' requires all inputs/outputs to be known to bazel
~ facilitate correct |/O by running actions in “sandboxes”
e isolated environment
e only declared inputs/tools present
e only declared outputs copied out
e depending on OS, different approaches
(none, temp dir, chroot, ...)
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Actions

action do the actual work of building

...and hence take the most time

particularly interesting to avoid unnecessary actions
e dependency graph shows if prerequisites changed
e caching of input/output-relation itself

I' requires all inputs/outputs to be known to bazel

facilitate correct |/O by running actions in “sandboxes”
bonus: remote execution

= enables shared caches.

(Several close-by engineers working on the same code base!)
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Skylark

e Bazel has built-in rules
o specialized rules with knowledge about certain languages

cc_library, cc_binary, java_library, java_binary, ...

e generic ones, in particular genrule
— just specify a shell command (with $@, $<, ...)
(basically the only rule available in a Makefile)
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Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
o Python-like language (familiar syntax)
e but restricted to a simple core
without global state, complicated feature, . ..

~ deterministic, hermetic evaluation
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Skylark

e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX

e typeset pdf files from textual description (x.tex files)
e the *.tex files can pull in other files

(.sty, images, diagrams, \input other .tex-files)
e pdflatex main.tex && ...
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e Bazel has built-in rules
e but adding specialized rule for every language doesn’t scale
~» need ways to expend BUILD language: Skylark
e To get a feeling for the language, let's do an example
. and step by step develop rules for IATEX
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Macros

e First approach
e latex-rule is given by an entry point and a list of source files
e have a script to typeset this
(tmpdir, correct number of pdflatex runs, ...)
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Macros
e First approach (entry + files; script)

Summary
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e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
run = str(Label("//rules/latex:runlatex.sh"))
native.genrule (
name = name + "_pdf",
srcs = srcs,
cmd = ("sh $(location " + run +") $@"
+ " $(location " + main + ") $(SRCS)",
outs = [name + ".pdf"],
tools = [run],
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e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):

native.genrule(...)
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e can be loaded in BUILD files
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e First approach (entry + files; script)
~ write @ macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

e can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(
name = "slides",
main = "main.tex",
srcs = ["diagram.ps"],
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Macros

First approach (entry + files; script)
write a macro in rules/latex/latex.bzl

def latex(name="", main="", srcs=[]):
native.genrule(...)

can be loaded in BUILD files
load("//rules/latex/latex.bzl", "latex")

latex(
name = "slides",
main = "main.tex",
srcs = ["diagram.ps"],
)

central maintenance; convenience-targets (xpdf, pdfnup, ...
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File Groups

e Start thinking in groups of files
“That slide with all the diagrams belonging to it”
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File Groups

e Start thinking in groups of files
e Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",

srcs = ["barchapter.tex", ":foosection", ...])
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e Start thinking in groups of files
e Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",
srcs = ["barchapter.tex", ":foosection", ...])

e Gives a label to a set of files (with traversal order)
~> single maintenance point



Extending Bazel
00e00

File Groups

Start thinking in groups of files
Built-in rule: filegroup

filegroup(name = "foosection",
srcs = ["foosection.tex", ":diagram"])
filegroup(
name = "barchapter",
srcs = ["barchapter.tex", ":foosection", ...])

Gives a label to a set of files (with traversal order)
~ single maintenance point

Can be nested, inserting the entries

(but implemented in a memory-efficient way!)
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e Next: missing argument checking, argv limits
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Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

latex = rule(

attrs = {
"main" : attr.label(allow_files=True),
"srcs" : attr.label_ list(allow_files=True),
"_runlatex": attr.label(

cfg="host", allow_files=True,

default = Label("//rules/latex:runlatex.sh")),
b
outputs = {"pdf" : "Y{name}.pdf"},
implementation = _latex_impl,

)
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Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
inputs_file = ctx.new file(
ctx.label.name + ".allinputs")
ctx.file_action(
inputs_file,
"\n".join([f.path for f in inputs])
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(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

ctx.file_action(...)
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Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

ctx.file_action(...)

output = ctx.new file(ctx.label.name + ".pdf")

args = [f.path for f in ctx.files._runlatex] \
+ [output.path] \
+ [f.path for f in ctx.files.main[:1]] \
+ [inputs_file.path]
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e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):
ctx.file_action(...)

output = ctx.new file(ctx.label.name + ".pdf")
args = ...
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def _latex impl(ctx):

args = ...
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Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args = ...
ctx.action(

inputs = list(inputs | depset([inputs_filel)

| depset(ctx.files. runpdflatex))

outputs = [output],

command = ["/bin/sh"] + args,

mnemonic = "PdfLatex",

progress _message = "Typesetting %s as pdf" \

% ctx.label,
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e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args =
ctx.action(...)
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Rules

e Next: missing argument checking, argv limits ~» Rules
(also changing the script, now expecting an arguments file)

def _latex impl(ctx):

args =
ctx.action(...)

e Additional benefits
e Proper quoting for free
e Meaningful progress messages
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Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action is simple

includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
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Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action

includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))

Using this new file implicitly depends on the sources!
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Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]
Using this new file implicitly depends on the sources!
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Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]
Using this new file implicitly depends on the sources!
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Providers

e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider
LtxInfo = provider()
includefile = rule(...)
def _includefile impl(ctx):
output = ctx.new file(ctx.label.name + ".tex")
deps = depset(ctx.files.srcs)
includes = ["\\input{%s}\n" % f.short path
for f in deps]
ctx.file_action(output = output,
content = "".join(includes))
return [LtxInfo(refd = depset([output]) |deps)]
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e Start to collect macro definitions, organized in file groups
e Want to \input such a file group..
e file action plus provider

def _includefile_impl(ctx):

return [LtxInfo(refd = depset([output]) |deps)]
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e file action plus provider

def _includefile impl(ctx):
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Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
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Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
for i in ctx.attr.srcs:
if LtxInfo in i:
inputs = inputs | i[LtxInfo].refd
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Providers

Start to collect macro definitions, organized in file groups
Want to \input such a file group. .

file action plus provider

def _includefile impl(ctx):

return [LtxInfo(refd = depset([outputl]) |deps)]
Consuming rules can use it

def _latex_impl(ctx):
inputs = depset(ctx.files.srcs) \
| depset(ctx.files.main)
for i in ctx.attr.srcs:
if LtxInfo in i:
inputs = inputs | i[LtxInfo].refd
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Summary

declarative BUILD files

generic tool: can bring your own rules
(Python-like extension language; can start easy)

all dependencies tracked ~~ correctness
(sandboxes to ensure all /0 is known)

full knowledge enables fast builds
(caching of actions, remote execution, parallelism, ... )

® open-source
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Try Bazel

Try Bazel yourself.

e Homepage https://bazel.build/
Mailing lists
e bazel-discuss@googlegroups.com
e bazel-dev@googlegroups.com

Repository and issue tracker
https://github.com/bazelbuild/bazel

IRC #bazel on irc.freenode.net

Release key fingerprint
71A1 DOEF CFEB 6281 FD04 37C9 3D59 19B4 4845 T7EEO

Thanks for your attention. Questions?


https://bazel.build/
https://github.com/bazelbuild/bazel
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