
Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti
The Cluster Virtualization Management Software

Helga Velroyen (helgav@google.com)
Klaus Aehlig (aehlig@google.com)

August 24, 2014



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Cluster

instance

instance

node

instance

node

instance

node

For Ganeti, a cluster is

• virtual machines (“instances”)

• on physical machines (“nodes”)
using some hypervisor (Xen, kvm, . . . )

• and some storage solution
(DRBD, shared storage, . . . ).



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Cluster Management

instance

instance

node

instance

node

instance

node

Ganeti helps

• to get there
• uniform interface

hypervisors/storage/. . .
• policies, balanced allocation

keeping N + 1 redundancy

• and to stay there

• failover instances
• rebalance
• Restart instances after power

outage
• . . .



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Cluster Management

instance

instance

node

instance

node

instance

node

Ganeti helps

• to get there
• uniform interface

hypervisors/storage/. . .
• policies, balanced allocation

keeping N + 1 redundancy

• and to stay there

• failover instances
• rebalance
• Restart instances after power

outage
• . . .



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Cluster Management

instance

instance

node

instance

node

instance

node

instanceinstance

Ganeti helps

• to get there
• uniform interface

hypervisors/storage/. . .
• policies, balanced allocation

keeping N + 1 redundancy

• and to stay there
• failover instances
• rebalance
• Restart instances after power

outage
• . . .



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

gnt-* luxid

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

gnt-* luxid

• gnt-* don’t execute tasks
they just submit jobs

• CLI does not have to wait; --submit
• can be queried with gnt-job info

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

gnt-* luxid

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

gnt-* luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• written to disk
• replicated to some other nodes

(the “master candidates”)

• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job

• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• limit on jobs running simultaneously
(NEW: run-time tunable)

• job dependency
(NEW: honored at queuing stage)

• ad-hoc rate limiting
(NEW in Ganeti 2.13; more later)

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• limit on jobs running simultaneously
(NEW: run-time tunable)

• job dependency
(NEW: honored at queuing stage)

• ad-hoc rate limiting
(NEW in Ganeti 2.13; more later)

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• limit on jobs running simultaneously
(NEW: run-time tunable)

• job dependency
(NEW: honored at queuing stage)

• ad-hoc rate limiting
(NEW in Ganeti 2.13; more later)

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

job

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• forked off, but still waiting for locks
(instances, nodes, . . . )

• Reading configuration
• Already responsible for its own job file

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

job

wconfd

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• forked off, but still waiting for locks
(instances, nodes, . . . )

• Reading configuration

• Already responsible for its own job file

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

job

wconfd

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• forked off, but still waiting for locks
(instances, nodes, . . . )

• Reading configuration
• Already responsible for its own job file

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

luxid

noded

job file

job file

job

wconfd

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

node

luxid

noded

job file

job file

job

wconfd

noded

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• Actual manipulation of the world
via noded

• Updates the configuration

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

node

luxid

noded

job file

job file

job

wconfd

noded

conf

conf

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• Actual manipulation of the world
via noded

• Updates the configuration

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

node

luxid

noded

job file

job file

job

wconfd

noded

conf

conf

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Jobs

master node

MC node

node

luxid

noded

job file

job file
wconfd

noded

conf

conf

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs

• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs

• cluster verification (parallel verification of node groups)

• node evacuation (parallel instance moves)
• . . .

• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs

• cluster verification (parallel verification of node groups)
• node evacuation (parallel instance moves)
• . . .

• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs

• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs

• To keep track why a particular job is run,
parts are annotated with a “reason trail”

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs

• hbal -L -X

• External tools on top of Ganeti

• To keep track why a particular job is run,
parts are annotated with a “reason trail”

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs

• hbal -L -X
• External tools on top of Ganeti

• To keep track why a particular job is run,
parts are annotated with a “reason trail”

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs

• To keep track why a particular job is run,
parts are annotated with a “reason trail”

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples

• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend

• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)
• Reasons starting with rate-limit:n: are rate-limit buckets

• At most n such jobs run in parallel



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)
• Reasons starting with rate-limit:n: are rate-limit buckets
• At most n such jobs run in parallel



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)
• Reasons starting with rate-limit:n: are rate-limit buckets
• At most n such jobs run in parallel

gnt-group evacuate

--reason="rate-limit:7:maintenance 123" groupA



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement

• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)
• IAllocator protocol

• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement
• Ganeti tries to keep utilization equal at all nodes

• Especially do so when creating new instances!
(Saves later moves)

• IAllocator protocol
• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement
• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)

• IAllocator protocol
• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement
• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)
• IAllocator protocol

• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement
• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)
• IAllocator protocol

• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Instance placement
• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)
• IAllocator protocol

• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks

NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks

NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks

NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks

NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks
NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks
NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Deployment at Scale

• RAPI

• Hspace

• Dedicated

• ExtStorage



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

RAPI

• RAPI = remote API

• RESTful

• Client library hides all the details

• You need the cluster name and credentials (for writing)

• Virtual IP for cluster master failover



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

RAPI - Python Client

Example usage of the Python client:

import ganeti_rapi_client as grc

import pprint

rapi = grc.GanetiRapiClient(’cluster1.example.com ’)

print rapi.GetInfo ()

pp = pprint.PrettyPrinter(indent =4). pprint

instances = rapi.GetInstances(bulk=True)

pp(instances)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

RAPI - Python Client

Read/Write requires credentials:

import ganeti_rapi_client as grc

rapi = grc.GanetiRapiClient(’cluster1.example.com ’)

rapi = grc.GanetiRapiClient(

’cluster1 ’, username=’USERNAME ’, password=’PASSWORD ’)

rapi.AddClusterTags(tags=[’dns ’])



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

RAPI - Curl

Of course, you can just use with curl on the commandline:

> curl -k https :// mycluster.example.com :5080/2/ nodes

[{"id": "mynode1.example.com",

"uri":: "/2/ nodes/mynode1.example.com"},

{"id": "mynode2.example.com",

"uri": "/2/ nodes/mynode2.example.com"},

curl -k -X POST -H "Content -Type: application/json"

--insecure -d ’{ "master_candidate ": false }’

https :// username:password@mycluster.example.com :5080 \

/2/ nodes/mynode3.example.com/modify



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Hspace - Capacity Planning

Running clusters, you might want to know:

• How many more instances can I put on my cluster?

• Which resource will I run out first?

• How many new machines should I buy for demand X?

Hspace simulates resource consumption:

• It simulates to add new instances till we run out of resources

• Allocation done like with hail

• Start with maximal size of instance (according to ipolicy)

• Reduce size if we hit the limit for one resource



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Hspace - on a live cluster

> hspace -L

The cluster has 3 nodes and the following resources:

MEM 196569 , DSK 10215744 , CPU 72, VCPU 288.

There are 2 initial instances on the cluster.

Tiered (initial size) instance spec is:

MEM 1024, DSK 1048576 , CPU 8, using disk template ’drbd ’.

Tiered allocation results:

- 4 instances of spec MEM 1024, DSK 1048576 , CPU 8

- 2 instances of spec MEM 1024, DSK 258304 , CPU 8

- most likely failure reason: FailDisk

- initial cluster score: 1.92199260

- final cluster score: 2.03107472

- memory usage efficiency: 3.26%

- disk usage efficiency: 92.27%

- vcpu usage efficiency: 18.40%

[...]



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Hspace - Simulation Backend

Planning a cluster that does not exist yet

• Simulates an empty cluster with given data

• Format:
• allocation policy (p=preferred, a=last resort, u=unallocatable)
• number of nodes (in this group)
• disk space per node (in MiB)
• RAM (in MiB)
• number of physical CPUs

• use --simulate several times for more node groups



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Hspace - Cluster Simulation

> hspace --simulate=p,3 ,34052480 ,65523 ,24 \

--disk -template=drbd --tiered -alloc =1048576 ,1024 ,8

The cluster has 3 nodes and the following resources:

MEM 196569 , DSK 102157440 , CPU 72, VCPU 288.

There are no initial instances on the cluster.

Tiered (initial size) instance spec is:

MEM 1024, DSK 1048576 , CPU 8, using disk template ’drbd ’.

Tiered allocation results:

- 33 instances of spec MEM 1024, DSK 1048576 , CPU 8

- 3 instances of spec MEM 1024, DSK 1048576 , CPU 7

- most likely failure reason: FailCPU

- initial cluster score: 0.00000000

- final cluster score: 0.00000000

- memory usage efficiency: 18.75%

- disk usage efficiency: 73.90%

- vcpu usage efficiency: 100.00%

[...]



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Dedicated - Use Case

Use case:

• Offer machines to customers which require exclusive disk
resources

• No two instances using the same disks

• Solution could be to use bare metal, but ...

You still want the benefits of virtualization:

• A different OS than the standard host OS

• Easy migration if hardware fails

Ganeti Dedicated offers exactly that.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti Dedicated - Realisation

Setup:

• Use Ganeti nodes with LVM storage (plain or DRBD)

• Make sure no two physical volumes share the same physical
disk

• Flag nodes in a node group with exclusive storage

Ganeti will:

• Not place more than one instance on the same physical
volume

• Respect this restriction in operations like cluster balancing
(hbal) and capacity planning (hspace)



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

ExtStorage - Setup

Ganeti’s integration of shared / distributed / networked storage

• All nodes have access to an external storage (SAN/NAS
appliance etc.)

• Instance disks reside inside that storage

• Instances are able to migrate/failover to any other node

• The ExtStorage interface is a generic way to access external
storage



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

ExtStorage - Implementation

• For each type of appliance, Ganeti expected an ’ExtStorage
provider’

• A bunch of scripts to do carry out these operations:
• Create / grow / remove an instance disk on the applicance
• Attach / detach a disk to / from a Ganeti node
• SetInfo on a disk (add metadata)
• Verify the provider’s supported parameters

• Parameters transmitted via environment variables



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

ExtStorage - Examples
Assume you have two appliance of different vendors:

• /usr/share/ganeti/extstorage/emc/*

• /usr/share/ganeti/extstorage/ibm/*

Some example usages:

• gnt-instance add -t ext

--disk=0:size=2G,provider=emc

--disk=2:size=10G,provider=ibm

• gnt-instance modify --disk

3:add,size=20G,provider=ibm

• gnt-instance migrate [-n nodeX.example.com]

testvm1

• gnt-instance modify --disk

2:add,size=3G,provider=emc,param5=value5



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Current Development - 2.10

• 2.10.7, available in debian wheezy backports

• KVM:
• hotplug support
• direct access to RBD storage

• Cross-cluster instance moves:
• automatic node allocation on destination cluster
• convert disk templates on the fly

• Cluster balancing based on CPU load

• Ganeti upgrades



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti upgrades

Before:

• On all nodes:
• /etc/init.d/ganeti stop
• apt-get install ganeti2=2.7.1-1

ganeti-htools=2.7.1-1

• On the master node:
• /usr/lib/ganeti/tools/cfgupgrade

• On all nodes:
• /etc/init.d/ganeti start

• On the master node:
• gnt-cluster redist-conf

• ... lots of other steps, depending on the version

• If something goes wrong, fix the mess manually.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Ganeti upgrades

From 2.10 on, Ganeti comes with a built-in upgrade mechanism:

• On all nodes:
• apt-get install ganeti-2.11

• On the master node:
• gnt-cluster upgrade --to 2.11

• To roll back:
• gnt-cluster upgrade --to 2.10

Note that you still have to install the new and deinstall the old
packages manually.



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Current Development - 2.11

• Current stable version, available in Debian Jessie

• RPC security: individual node certificates

• Compression for instance moves / backups / imports

• Configurable SSH ports per node group

• Gluster support (experimental)

• hsqueeze



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

hsqueeze

Huddle your instances during a cold cold night!

• Instances with shared storage (= live migration cheap)

• High load during peak times, low utilization otherwise

• Goal: During low utilization times, squeeze as many instances
together as possible and shutdown unused nodes

• Use: Hsqueeze!
• Calculates migration plan for instances
• Aims to drain as many nodes as possible
• But not too many to not cause resource congestion
• Uses hbal to calculate balanced load

• In 2.11, only planning; in 2.13 including execution



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

LXC

• LXC = Linux Containers

• Was experimental for a looong time (because nobody got
time for it)

• Now: Google Summer of Code Project

• Goal: make it production ready, including a proper test chain

• Status: Going well, probably to be released in 2.13

• Works with LXC 1.0

• Live-migration still experimental



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Disk Template Conversions

• Ganeti offers various disk templates for instances:
• file, lvm, drbd, sharedfile, external storage

• So far, converting between those is only partially fun

• Google Summer of Code Project to make conversions smooth

• Status: Going well, probably release in 2.13



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

The Future

No guarantees!

• Improved Jobqueue management

• Network improvements (IPv6, more flexibility)

• Storage: more work on shared storage

• Heterogeneous clusters

• Improvements on cross-cluster instance moves

• Improvements on SSH key handling



Introduction Jobs Locking Deployment at Scale Current and Future Development Conclusion

Conclusion

• Check us out at
https://code.google.com/p/ganeti/

• Or just search for ”Ganeti”

Questions? Feedback? Ideas? Flames?

Upcoming Events:

• Ganeticon, Portland, Oregon, Sep 2nd - 4th

c©2010-2014 Google
Use under GPLv2+ or CC-by-SA

https://code.google.com/p/ganeti/

	Introduction
	Purpose of Ganeti
	Look and Feel

	Jobs
	Life of a Ganeti Job
	Reason Trail

	Locking
	Locks on instance creation

	Deployment at Scale
	RAPI
	Hspace
	Ganeti Dedicated
	The ExtStorage Interface

	Current and Future Development
	2.10
	2.11
	The Future

	Conclusion
	Conclusion


