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For Ganeti, a cluster is

• virtual machines (“instances”)

• on physical machines (“nodes”)
using some hypervisor (Xen, kvm, . . . )

• and some storage solution
(DRBD, shared storage, . . . ).
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• to get there
• uniform interface

hypervisors/storage/. . .
• policies, balanced allocation

keeping N + 1 redundancy

• and to stay there

• failover instances
• rebalance
• Restart instances after power

outage
• . . .
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Basic Interaction—Cluster creation

• gnt-cluster init -s 192.0.2.1

clusterA.example.com

• gnt-node add -s 192.0.2.2 node2.example.com

• . . .

• gnt-instance add -t drbd -o debootstrap -s 2G

--tags=foo,bar instance1.example.com

The -o debootstrap references the OS definition to be used.
An OS definition essentially is a collection of scripts to create,
import, export, . . . an instance.
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Basic Interaction—Planned Node maintenance

Evacutating a node

• gnt-node modify --drained=yes node2.example.com

• hbal -L -X

• gnt-node modify --offline=yes node2.example.com

Using the node again

• gnt-node modify --online=yes node2.example.com

• hbal -L -X
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Ganeti Jobs

• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• queued

• waiting

• running

• success

(hopefully; or error, canceled)
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Ganeti Jobs

master node

MC node

gnt-* luxid

noded

job file
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• gnt-* don’t execute tasks
they just submit jobs

• luxid recieves job
• written to disk
• replicated to some other nodes

(the “master candidates”)

• queued
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• success
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Reason Trail
• Instead of running, jobs can also expand to other jobs

• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• The “reason trail” is also used for rate limiting (Ganeti 2.13+)
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Reason Trail
• Instead of running, jobs can also expand to other jobs
• High-level commands can submit many Ganeti jobs
• To keep track why a particular job is run,

parts are annotated with a “reason trail”
• List of (source, reason, time) triples
• Every entity touching can (and usually does) extend
• Inherited on job expansion

• The “reason trail” is also used for rate limiting (Ganeti 2.13+)
• Reasons starting with rate-limit:n: are rate-limit buckets
• At most n such jobs run in parallel

gnt-group evacuate

--reason="rate-limit:7:maintenance 123" groupA
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Instance placement

• Ganeti tries to keep utilization equal at all nodes
• Especially do so when creating new instances!

(Saves later moves)
• IAllocator protocol

• delegate decission where to place to external program
• Given: cluster description and needed resources
• Answer: node(s) to place instance(s)

• Most popular allocator hail
Same algorithm as hbal

• Locking
• need to guarantee that resources are still available

once nodes are chosen
• lock all nodes, release remaining after choice

 Instance creation sequential
Even if other nodes will eventually be chosen!
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Opportunistic Locking

Parallel instance creation with --opportunistic-locking

• Grab just the available node locks

NEW: but at least one (two for DRBD)

• Choose among those nodes
and release the remaining

 New error type (“try again”) if not enough resources
on the available nodes

Planned: internal retry
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Deployment at Scale

• RAPI

• Hspace

• Dedicated

• ExtStorage
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RAPI

• RAPI = remote API

• RESTful

• Client library hides all the details

• You need the cluster name and credentials (for writing)

• Virtual IP for cluster master failover
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RAPI - Python Client

Example usage of the Python client:

import ganeti_rapi_client as grc

import pprint

rapi = grc.GanetiRapiClient(’cluster1.example.com ’)

print rapi.GetInfo ()

pp = pprint.PrettyPrinter(indent =4). pprint

instances = rapi.GetInstances(bulk=True)

pp(instances)
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RAPI - Python Client

Read/Write requires credentials:

import ganeti_rapi_client as grc

rapi = grc.GanetiRapiClient(’cluster1.example.com ’)

rapi = grc.GanetiRapiClient(

’cluster1 ’, username=’USERNAME ’, password=’PASSWORD ’)

rapi.AddClusterTags(tags=[’dns ’])
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RAPI - Curl

Of course, you can just use with curl on the commandline:

> curl -k https :// mycluster.example.com :5080/2/ nodes

[{"id": "mynode1.example.com",

"uri":: "/2/ nodes/mynode1.example.com"},

{"id": "mynode2.example.com",

"uri": "/2/ nodes/mynode2.example.com"},

curl -k -X POST -H "Content -Type: application/json"

--insecure -d ’{ "master_candidate ": false }’

https :// username:password@mycluster.example.com :5080 \

/2/ nodes/mynode3.example.com/modify
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Hspace - Capacity Planning

Running clusters, you might want to know:

• How many more instances can I put on my cluster?

• Which resource will I run out first?

• How many new machines should I buy for demand X?

Hspace simulates resource consumption:

• It simulates to add new instances till we run out of resources

• Allocation done like with hail

• Start with maximal size of instance (according to ipolicy)

• Reduce size if we hit the limit for one resource
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Hspace - on a live cluster

> hspace -L

The cluster has 3 nodes and the following resources:

MEM 196569 , DSK 10215744 , CPU 72, VCPU 288.

There are 2 initial instances on the cluster.

Tiered (initial size) instance spec is:

MEM 1024, DSK 1048576 , CPU 8, using disk template ’drbd ’.

Tiered allocation results:

- 4 instances of spec MEM 1024, DSK 1048576 , CPU 8

- 2 instances of spec MEM 1024, DSK 258304 , CPU 8

- most likely failure reason: FailDisk

- initial cluster score: 1.92199260

- final cluster score: 2.03107472

- memory usage efficiency: 3.26%

- disk usage efficiency: 92.27%

- vcpu usage efficiency: 18.40%

[...]
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Hspace - Simulation Backend

Planning a cluster that does not exist yet

• Simulates an empty cluster with given data

• Format:
• allocation policy (p=preferred, a=last resort, u=unallocatable)
• number of nodes (in this group)
• disk space per node (in MiB)
• RAM (in MiB)
• number of physical CPUs

• use --simulate several times for more node groups
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Hspace - Cluster Simulation

> hspace --simulate=p,3 ,34052480 ,65523 ,24 \

--disk -template=drbd --tiered -alloc =1048576 ,1024 ,8

The cluster has 3 nodes and the following resources:

MEM 196569 , DSK 102157440 , CPU 72, VCPU 288.

There are no initial instances on the cluster.

Tiered (initial size) instance spec is:

MEM 1024, DSK 1048576 , CPU 8, using disk template ’drbd ’.

Tiered allocation results:

- 33 instances of spec MEM 1024, DSK 1048576 , CPU 8

- 3 instances of spec MEM 1024, DSK 1048576 , CPU 7

- most likely failure reason: FailCPU

- initial cluster score: 0.00000000

- final cluster score: 0.00000000

- memory usage efficiency: 18.75%

- disk usage efficiency: 73.90%

- vcpu usage efficiency: 100.00%

[...]
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Ganeti Dedicated - Use Case

Use case:

• Offer machines to customers which require exclusive disk
resources

• No two instances using the same disks

• Solution could be to use bare metal, but ...

You still want the benefits of virtualization:

• A different OS than the standard host OS

• Easy migration if hardware fails

Ganeti Dedicated offers exactly that.
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Ganeti Dedicated - Realisation

Setup:

• Use Ganeti nodes with LVM storage (plain or DRBD)

• Make sure no two physical volumes share the same physical
disk

• Flag nodes in a node group with exclusive storage

Ganeti will:

• Not place more than one instance on the same physical
volume

• Respect this restriction in operations like cluster balancing
(hbal) and capacity planning (hspace)
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ExtStorage - Setup

Ganeti’s integration of shared / distributed / networked storage

• All nodes have access to an external storage (SAN/NAS
appliance etc.)

• Instance disks reside inside that storage

• Instances are able to migrate/failover to any other node

• The ExtStorage interface is a generic way to access external
storage
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ExtStorage - Implementation

• For each type of appliance, Ganeti expected an ’ExtStorage
provider’

• A bunch of scripts to do carry out these operations:
• Create / grow / remove an instance disk on the applicance
• Attach / detach a disk to / from a Ganeti node
• SetInfo on a disk (add metadata)
• Verify the provider’s supported parameters

• Parameters transmitted via environment variables
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ExtStorage - Examples
Assume you have two appliance of different vendors:

• /usr/share/ganeti/extstorage/emc/*

• /usr/share/ganeti/extstorage/ibm/*

Some example usages:

• gnt-instance add -t ext

--disk=0:size=2G,provider=emc

--disk=2:size=10G,provider=ibm

• gnt-instance modify --disk

3:add,size=20G,provider=ibm

• gnt-instance migrate [-n nodeX.example.com]

testvm1

• gnt-instance modify --disk

2:add,size=3G,provider=emc,param5=value5
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Current Development - 2.10

• 2.10.7, available in debian wheezy backports

• KVM:
• hotplug support
• direct access to RBD storage

• Cross-cluster instance moves:
• automatic node allocation on destination cluster
• convert disk templates on the fly

• Cluster balancing based on CPU load

• Ganeti upgrades
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Ganeti upgrades

Before:

• On all nodes:
• /etc/init.d/ganeti stop
• apt-get install ganeti2=2.7.1-1

ganeti-htools=2.7.1-1

• On the master node:
• /usr/lib/ganeti/tools/cfgupgrade

• On all nodes:
• /etc/init.d/ganeti start

• On the master node:
• gnt-cluster redist-conf

• ... lots of other steps, depending on the version

• If something goes wrong, fix the mess manually.
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Ganeti upgrades

From 2.10 on, Ganeti comes with a built-in upgrade mechanism:

• On all nodes:
• apt-get install ganeti-2.11

• On the master node:
• gnt-cluster upgrade --to 2.11

• To roll back:
• gnt-cluster upgrade --to 2.10

Note that you still have to install the new and deinstall the old
packages manually.
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Current Development - 2.11

• Current stable version, available in Debian Jessie

• RPC security: individual node certificates

• Compression for instance moves / backups / imports

• Configurable SSH ports per node group

• Gluster support (experimental)

• hsqueeze
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hsqueeze

Huddle your instances during a cold cold night!

• Instances with shared storage (= live migration cheap)

• High load during peak times, low utilization otherwise

• Goal: During low utilization times, squeeze as many instances
together as possible and shutdown unused nodes

• Use: Hsqueeze!
• Calculates migration plan for instances
• Aims to drain as many nodes as possible
• But not too many to not cause resource congestion
• Uses hbal to calculate balanced load

• In 2.11, only planning; in 2.13 including execution
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LXC

• LXC = Linux Containers

• Was experimental for a looong time (because nobody got
time for it)

• Now: Google Summer of Code Project

• Goal: make it production ready, including a proper test chain

• Status: Going well, probably to be released in 2.13

• Works with LXC 1.0

• Live-migration still experimental
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Disk Template Conversions

• Ganeti offers various disk templates for instances:
• file, lvm, drbd, sharedfile, external storage

• So far, converting between those is only partially fun

• Google Summer of Code Project to make conversions smooth

• Status: Going well, probably release in 2.13
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The Future

No guarantees!

• Improved Jobqueue management

• Network improvements (IPv6, more flexibility)

• Storage: more work on shared storage

• Heterogeneous clusters

• Improvements on cross-cluster instance moves

• Improvements on SSH key handling
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Conclusion

• Check us out at
https://code.google.com/p/ganeti/

• Or just search for ”Ganeti”

Questions? Feedback? Ideas? Flames?

Upcoming Events:

• Ganeticon, Portland, Oregon, Sep 2nd - 4th

c©2010-2014 Google
Use under GPLv2+ or CC-by-SA

https://code.google.com/p/ganeti/
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