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Some history

• Cut-elimination: a cut ¬A ∨ ¬B A ∧B
⊥ is replaced by cuts on A and B.

• This process is defined by induction on (semi-formal) derivations.

• Want to separate the operational definition from the proof-theoretical analysis
(well-foundedness of the derivation involves ordinal notation systems and strong means).

• In order to compute the normalized derivation in a primitive recursive way

• Mints 1978 introduced repetition rule∗ Γ ` A
Γ ` A

to compute the last rule of the

normalized derivation (“Please wait; your proof will soon be computed
(hopefully)”)

• This procedure even applies to non-wellfounded derivations (it is continuous).

∗ which has the subformula property!
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Goal

• Transfer ideas to λ-calculus (as Schwichtenberg 1998 and others did).
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Thus: define and analyze
a primitive recursive normalization function

( )β : Λ(co) → Λco
R
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Goal

• Transfer ideas to λ-calculus (as Schwichtenberg 1998 and others did).

• Interesting, because some λ-terms (like Y ) have infinite “normal forms”, or are
even diverging (like Ω).

• Need a coinductive λ-calculus to write out the normal forms!
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Thus: define and analyze
a primitive recursive normalization function

( )β : Λ(co) → Λco
R

In particular, explain why and how many repetition rules are needed.
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Terms

Terms. Inductive and coinductive λ-calculus in de Bruijn-notation (x ∈ N).

Λ 3 r, s ::= x | rs | λr
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Terms

Terms. Inductive and coinductive λ-calculus in de Bruijn-notation (x ∈ N).

Λ 3 r, s ::= x | rs | λr
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ΛR 3 r, s ::= x | rs | λr | Rr | βr
Λco
R 3 r, s ::=co x | rs | λr | Rr | βr

Examples.
Θ := tt with t = λλ.0.110 = “λtλf(f(ttf))”
Y := λ.(λ.1.00)(λ.1.00) = “λf.(λx(f(xx)))(λx(f(xx)))”
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Terms

Terms. Inductive and coinductive λ-calculus in de Bruijn-notation (x ∈ N).

Λ 3 r, s ::= x | rs | λr
Λco 3 r, s ::=co x | rs | λr
ΛR 3 r, s ::= x | rs | λr | Rr | βr
Λco
R 3 r, s ::=co x | rs | λr | Rr | βr

Examples.
Θ := tt with t = λλ.0.110 = “λtλf(f(ttf))”
Y := λ.(λ.1.00)(λ.1.00) = “λf.(λx(f(xx)))(λx(f(xx)))”
Y co

r := rY co
r = r(r(r . . .

Observational equality. r 'k s iff the outermost k constructors are identical.
E.g., 1λλ0 '2 1λ(0 2).

Equality. r = s iff r 'k s for all k.
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Continuous normalization

Substitution. r[s] is well-defined and continuous with identity as modulus of
continuity, i.e.,

r 'k r′ ∧ s 'k s′ ⇒ r[s] 'k r′[s′].

Reduction. → is the compatible closure of (λr)s → r[s].

Normal forms. NF 3 r, s ::=co x~r | λr | Rr | βr.

Continuous normalization. rβ := r@ε
where for r, ~s ∈ Λco we define r@~s ∈ NF by

'
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%

(rs)@~s := R.r@(s,~s )
x@~s := x~s β

(λr)@ε := λrβ

(λr)@(s,~s ) := β.r[s]@~s
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Examples

• (SKK)β = RRββλRRββ0 with S := λλλ.2 0 .1 0, K := λλ1.
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Properties

• Continuity: r 'k r′ ∧ ~s 'k
~s′ =⇒ r@~s 'k r′@~s′.

In particular rβ 'k r′β for r 'k r′.
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Properties

• Continuity: r 'k r′ ∧ ~s 'k
~s′ =⇒ r@~s 'k r′@~s′.

In particular rβ 'k r′β for r 'k r′.

• Soundness: r ∈ Λ ∧ rβ ∈ ΛR =⇒ r →∗ rβ∗

where r∗ is r without β and R (for r ∈ ΛR).

• Continuous normal forms: ∃s ∈ Λco.sβ = r iff ` r with

s,~s ` r

~s ` Rr

` ~r
~r ` x~r

` r
` λr

~s ` r
s,~s ` βr

• Analysis: A R is justified by a β or an application:

` s =⇒ Rζs ≥ βζs + Aζs
with = for complete paths ζ
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in the leftmost-outermost reduction strategy

Standardization. If r →∗ s ∈ NF ∩ Λ then r ; s, given by

~r ;~n ~s

x~r ;Σ ~n x~s

r ;n s

λr ;n λs

r[s]~s ;n t

(λr)s~s ;n+1 t
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in the leftmost-outermost reduction strategy

Standardization. If r →∗ s ∈ NF ∩ Λ then r ; s, given by

~r ;~n ~s

x~r ;Σ ~n x~s

r ;n s

λr ;n λs

r[s]~s ;n t

(λr)s~s ;n+1 t

Lemma. r ;n s =⇒ rβ �n
n sβ

where �k
n removes n occurrences of β and k occurences of R.
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Counting reductions

in the leftmost-outermost reduction strategy

Standardization. If r →∗ s ∈ NF ∩ Λ then r ; s, given by

~r ;~n ~s

x~r ;Σ ~n x~s

r ;n s

λr ;n λs

r[s]~s ;n t

(λr)s~s ;n+1 t

Lemma. r ;n s =⇒ rβ �n
n sβ

where �k
n removes n occurrences of β and k occurences of R.

Theorem. r ;n s ∈ NF ∩ Λ =⇒ rβ �
n+|s|
n s

where |s| is the number of applications in s.
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Conclusions and further work

• Defined and analyzed a primitive recursive normalization function in the
coinductive λ-calculus with repetition rule R.

• Explained the use of R, using auxiliary constructor β. This gives information
on the normalization process.

• Can be extended to calculi with infinitary branching rules, such as (ω).

• Straightforward implementation in Haskell:

beta :: Term -> Term
beta r = app r []

app :: Term -> [Term] -> Term
app (Lam r) (s:l) = Bet (app (subst r s 0) l)
app (Lam r) [] = Lam (beta r)
app (Var k) l = foldl App (Var k) (map beta l)
app (App r s) l = Rep (app r (s:l))
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Examples in Haskell

s = Lam (Lam (Lam (Var 2 ‘App‘ (Var 0) ‘App‘ (Var 1 ‘App‘ (Var 0)))))
k = Lam (Lam (Var 1))
y = Lam (Lam (Var 1 ‘App‘ (Var 0 ‘App‘ (Var 0))) ‘App‘

(Lam (Var 1 ‘App‘ (Var 0 ‘App‘ (Var 0)))))
yco r = r ‘App‘ (yco r)
theta = Lam (Lam (Var 0 ‘App‘ (Var 1 ‘App‘ (Var 1) ‘App‘ (Var 0)))) ‘App‘

Lam (Lam (Var 0 ‘App‘ (Var 1 ‘App‘ (Var 1) ‘App‘ (Var 0))))
church n = Lam (Lam (iterate (App (Var 1)) (Var 0) !! n))

Test runs:
Main> beta (s ‘App‘ k ‘App‘ k)

Rep (Rep (Bet (Bet (Lam (Rep (Rep (Bet (Bet (Var 0)))))))))
Main> beta (yco k)

Rep (Bet (Lam (Rep (Bet (Lam (Rep (Bet (Lam (Rep (Bet (Lam
(Rep (Bet (Lam (Rep (Bet (Lam (Rep {Interrupted!}

Main> beta (y ‘App‘ k)
Rep (Bet (Rep (Bet (Rep (Bet (Lam (Rep (Bet (Rep (Bet (Lam

(Rep (Bet (Rep (Bet (Lam (Rep (Bet (Rep {Interrupted!}
Main> beta (theta ‘App‘ k)

Rep (Rep (Bet (Bet (Rep (Bet
(Lam (Rep (Rep (Bet (Bet (Rep (Bet (Lam

(Rep (Rep (Bet (Bet (Rep (Bet (Lam {Interrupted!}
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More test runs

Main> beta (church 2 ‘App‘ (church 3))
Rep (Bet (Lam (Rep (Bet (Lam (Rep (Rep (Bet (Bet (Rep (App (Var 1)

(Rep (App (Var 1) (Rep (App (Var 1) (Rep (Rep (Bet (Bet (Rep
(App (Var 1) (Rep (App (Var 1) (Rep (App (Var 1) (Rep (Rep
(Bet (Bet (Rep (App (Var 1) (Rep (App (Var 1) (Rep (App (Var 1)
(Var 0))) [..])

Main> beta (church 3 ‘App‘ (church 2))
Rep (Bet (Lam (Rep (Bet (Lam (Rep (Rep (Bet (Bet (Rep (Rep (Bet

(Bet (Rep (App (Var 1) (Rep (App (Var 1) (Rep (Rep (Bet (Bet (Rep
(App (Var 1) (Rep (App (Var 1) (Rep (Rep (Bet (Bet (Rep (Rep (Bet
(Bet (Rep (App (Var 1) (Rep (App (Var 1) (Rep (Rep (Bet (Bet (Rep
(App (Var 1) (Rep (App (Var 1) (Var 0))) [..] )


