
Software Build Systems and Dependencies
Cooperating and Competing with Distributions
Dept: Intelligent Cloud Technologies Lab, Huawei Munich Research Center
Author: Klaus T. Aehlig
Date: Fall 2023

Prologue Dramatis Personae Landscape Actions Epilogue

Background: just
• generic build system

• high-level build description, provided by rules
• remote execution
• separation of physical and logical paths (“staging”)
• multi-repository builds based on local names; target-level caching

• open source
• open since Nov 2022; Relase 1.0.0 Dec 12, 2022; active development

(1.1.0 May 19, 2023, 1.2.0 Aug 25, 2023, . . .)
• Apache 2.0 license
• https://github.com/just-buildsystem/justbuild
• Packed in AUR, Nixpkgs, Spack, Void Linux

pending: Debian

1 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/just-buildsystem/justbuild
https://mentors.debian.net/package/justbuild/

Prologue Dramatis Personae Landscape Actions Epilogue

Background: just
• generic build system

• high-level build description, provided by rules
• remote execution
• separation of physical and logical paths (“staging”)
• multi-repository builds based on local names; target-level caching

• open source
• open since Nov 2022; Relase 1.0.0 Dec 12, 2022; active development

(1.1.0 May 19, 2023, 1.2.0 Aug 25, 2023, . . .)
• Apache 2.0 license
• https://github.com/just-buildsystem/justbuild
• Packed in AUR, Nixpkgs, Spack, Void Linux

pending: Debian

1 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/just-buildsystem/justbuild
https://mentors.debian.net/package/justbuild/

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .
• This at least includes security fixes—handled by a security team

• get early access to vulnerability reports need to establish trust
(handle them handle properly, without premature disclosure)

• deliberately small team, also encourge/accept that only one member be contacted

 e�ort for a single report must be managable
(what can be automated, like rebuild everything depending on this, is not a problem)

• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)
• In package build, dependencies passed as inputs

. . . possibly explicit, but often in form of the “ambient environment”
(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .

• This at least includes security fixes—handled by a security team
• get early access to vulnerability reports need to establish trust

(handle them handle properly, without premature disclosure)
• deliberately small team, also encourge/accept that only one member be contacted

 e�ort for a single report must be managable
(what can be automated, like rebuild everything depending on this, is not a problem)

• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)
• In package build, dependencies passed as inputs

. . . possibly explicit, but often in form of the “ambient environment”
(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .
• This at least includes security fixes—handled by a security team

• get early access to vulnerability reports need to establish trust
(handle them handle properly, without premature disclosure)

• deliberately small team, also encourge/accept that only one member be contacted

 e�ort for a single report must be managable
(what can be automated, like rebuild everything depending on this, is not a problem)

• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)
• In package build, dependencies passed as inputs

. . . possibly explicit, but often in form of the “ambient environment”
(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .
• This at least includes security fixes—handled by a security team

• get early access to vulnerability reports need to establish trust
(handle them handle properly, without premature disclosure)

• deliberately small team, also encourge/accept that only one member be contacted
 e�ort for a single report must be managable

(what can be automated, like rebuild everything depending on this, is not a problem)

• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)
• In package build, dependencies passed as inputs

. . . possibly explicit, but often in form of the “ambient environment”
(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .
• This at least includes security fixes—handled by a security team

• get early access to vulnerability reports need to establish trust
(handle them handle properly, without premature disclosure)

• deliberately small team, also encourge/accept that only one member be contacted
 e�ort for a single report must be managable

(what can be automated, like rebuild everything depending on this, is not a problem)
• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)

• In package build, dependencies passed as inputs
. . . possibly explicit, but often in form of the “ambient environment”

(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Linux Distributions
Of course, there are di�erences, but generally . . .

• Support stable releases/branches/. . .
• This at least includes security fixes—handled by a security team

• get early access to vulnerability reports need to establish trust
(handle them handle properly, without premature disclosure)

• deliberately small team, also encourge/accept that only one member be contacted
 e�ort for a single report must be managable

(what can be automated, like rebuild everything depending on this, is not a problem)
• Each upstream archive/tree packaged only at a single place—no embedded copies!
• Build o�ine! No fetches of dependencies during the build.

(Also for complience reasons!)
• In package build, dependencies passed as inputs

. . .possibly explicit, but often in form of the “ambient environment”
(which might well be a controlled chroot in which the build happens!)

2 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies

• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”

• Dependencies should be updated regularly—as part of the history
• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.

• It should just work, also for cooperation partners.
(and they should get the same binary out)

• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)

• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)

• “So, why doesn’t the build tool just download the dependencies?”
(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

TLM and Software Development in Industry
Your milage may vary, but the following are not unheard of.

• SWEs should not waste time installing dependencies
• Everyone to use the same dependencies, no “works on this machine”
• Dependencies should be updated regularly—as part of the history

• reconstruct old versions and work with branches (production, staging, head, . . .)
• bisect over dependency updates—an update might be the cause of a breakage

• This also include first-party dependencies.
• It should just work, also for cooperation partners.

(and they should get the same binary out)
• Ex-post proof that a binary was built from certain sources. (specific use case)
• “So, why doesn’t the build tool just download the dependencies?”

(We have known-good hashes to verify the downloads, so all is fine.)

3 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches
• “I’m just a build system”

• Just traverses a graph in topological order
• example: make

• “Let me inspect the environment for you”
• search the environment for the required dependencies

(trying all “standard paths”, “standard names”, heuristics . . .)
• interpolate the found locations into the build description
• example: autotools

That’s basically the world of traditional Linux distributions.

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches
• “I’m just a build system”

• Just traverses a graph in topological order
• example: make

• “Let me inspect the environment for you”
• search the environment for the required dependencies

(trying all “standard paths”, “standard names”, heuristics . . .)
• interpolate the found locations into the build description
• example: autotools

That’s basically the world of traditional Linux distributions.

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches
• “I’m just a build system”

• Just traverses a graph in topological order
• example: make

• “Let me inspect the environment for you”
• search the environment for the required dependencies

(trying all “standard paths”, “standard names”, heuristics . . .)
• interpolate the found locations into the build description
• example: autotools

That’s basically the world of traditional Linux distributions.

4 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches (cont’d)
• “Trust us, we’re the experts”

• Host pre-built JDKs for all OS/architectures
• embedd URLs and hashes into the build tool

(You’re updating your build tool regularly, aren’t you?)
• download as needed
• example: bazel

• “Let me download the right bazel version for you”
• With frequent incompatible changes, the buildtool becomes itself a dependency
• Have a wrapper, that inspects .bazelversion, downloads the needed version of
bazel if not present, and run it

• example: bazelisk

5 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/bazelbuild/bazelisk

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches (cont’d)
• “Trust us, we’re the experts”

• Host pre-built JDKs for all OS/architectures
• embedd URLs and hashes into the build tool

(You’re updating your build tool regularly, aren’t you?)
• download as needed
• example: bazel

• “Let me download the right bazel version for you”
• With frequent incompatible changes, the buildtool becomes itself a dependency
• Have a wrapper, that inspects .bazelversion, downloads the needed version of
bazel if not present, and run it

• example: bazelisk

5 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/bazelbuild/bazelisk

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches (cont’d again)
• “You’ll only need this programming language anyway”

• tailor towards one language
• keep exhaustive collection of packages for that language

(and handle dependency resolution, etc)
• encourage every one to download from there, ignoring the distribution
• examples: pip, cargo

• “Let me manage everything for you”
• attempt a collection for everything you might possibly need
• encourge users of your build system to take everything from there
• example: Bazel Central Registry

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Existing Approaches (cont’d again)
• “You’ll only need this programming language anyway”

• tailor towards one language
• keep exhaustive collection of packages for that language

(and handle dependency resolution, etc)
• encourage every one to download from there, ignoring the distribution
• examples: pip, cargo

• “Let me manage everything for you”
• attempt a collection for everything you might possibly need
• encourge users of your build system to take everything from there
• example: Bazel Central Registry

6 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Flexible Repository Configuration
• Already have abstract repository configuration

• Build descriptions only use local names for other repositories
(association to global names in the "bindings" of the repository configuration)

• names of target files configurable
• roots can be taken from various places

 Easy to rebind a dependency, switch between alternative definitions, etc
• Also easy to do programatically, as it is simply a JSON file

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Flexible Repository Configuration
• Already have abstract repository configuration

• Build descriptions only use local names for other repositories
(association to global names in the "bindings" of the repository configuration)

• names of target files configurable
• roots can be taken from various places

 Easy to rebind a dependency, switch between alternative definitions, etc

• Also easy to do programatically, as it is simply a JSON file

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Flexible Repository Configuration
• Already have abstract repository configuration

• Build descriptions only use local names for other repositories
(association to global names in the "bindings" of the repository configuration)

• names of target files configurable
• roots can be taken from various places

 Easy to rebind a dependency, switch between alternative definitions, etc
• Also easy to do programatically, as it is simply a JSON file

7 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Support pkg-config for Dependencies and Dependents
$ cat TARGETS
{ "fmt": {"type": ["@", "rules", "CC/pkgconfig", "system_library"], "name": ["fmt"]}
, "hello":
{ "type": ["@", "rules", "CC", "library"]
, "name": ["hello"]
, "hdrs": ["hello.hpp"]
, "srcs": ["hello.cpp"]
, "deps": ["fmt"]
}

, "": {"type": ["@", "rules", "CC", "install-with-deps"], "targets": ["hello"]}
}
$

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Support pkg-config for Dependencies and Dependents
$ just-mr analyse fmt --dump-actions actions-fmt.json }
INFO: Performing repositories setup }
INFO: Found 2 repositories to set up INFO: Dumping actions for target [["@","","","fmt"],{}] to file 'actions-fmt.json'.
INFO: Setup finished, exec ["just","analyse","-C","/worker/build/62d9cc5ae42928f8/... $
INFO: Requested target is [["@","","","fmt"],{}]
INFO: Result of target [["@","","","fmt"],{}]: {

"artifacts": {
},
"provides": {
"compile-args": [
"@fmt.cflags"

],
"compile-deps": {
},
"link-args": [
"@fmt.ldflags"

],
"link-deps": {
},
"package": {
"cflags-files": {"fmt.cflags":{"data":{"id":"c3291488ce224adfd7363c5a0...
"ldflags-files": {"fmt.ldflags":{"data":{"id":"d49ced3c1f6735822eb14bb...

}
},
"runfiles": {

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Support pkg-config for Dependencies and Dependents
$ cat actions-fmt.json },
["ldflags.raw": {
{ "data": {
"command": ["/bin/sh","-c","pkg-config '--cflags' 'fmt' > 'fmt.cflags'"], "id": "68c1d7dafa4e91467154ac91ed5252943af483ab",
"env": { "path": "ldflags.raw"
"PATH": "/bin:/usr/bin" },

}, "type": "ACTION"
"output": ["fmt.cflags"] }

}, },
{ "output": ["fmt.ldflags"]
"command": ["/bin/sh","-c","pkg-config '--libs' 'fmt' > ldflags.raw"], }
"env": {]
"PATH": "/bin:/usr/bin" $

},
"output": ["ldflags.raw"]

},
{
"command": ["/bin/sh","-c","./add_rpath $(cat ldflags.raw) > 'fmt.ldflags'"],
"input": {
"add_rpath": {
"data": {
"path": "CC/pkgconfig/add_rpath",
"repository": "rules"

},
"type": "LOCAL"

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Support pkg-config for Dependencies and Dependents
$ just-mr analyse hello },
INFO: Performing repositories setup "run-libs": {
INFO: Found 2 repositories to set up },
INFO: Setup finished, exec ["just","analyse","-C","/worker/build/62d9cc5ae42928f8/... "run-libs-args": [
INFO: Requested target is [["@","","","hello"],{}]]
INFO: Result of target [["@","","","hello"],{}]: { },

"artifacts": { "runfiles": {
"libhello.a": {"data":{"id":"8d5b08509547e6eae6c21cfa46cf4ec2da045321","... "hello.hpp": {"data":{"path":"hello.hpp","repository":""},"type":"LOCAL"}

}, }
"provides": { }
"compile-args": [$
"@fmt.cflags"

],
"compile-deps": {
},
"link-args": [
"libhello.a",
"@fmt.ldflags"

],
"link-deps": {
},
"package": {
"cflags-files": {"fmt.cflags":{"data":{"id":"c3291488ce224adfd7363c5a0...
"ldflags-files": {"fmt.ldflags":{"data":{"id":"d49ced3c1f6735822eb14bb...
"name": "hello"

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Support pkg-config for Dependencies and Dependents
$ just-mr build -P lib/pkgconfig/hello.pc
INFO: Performing repositories setup
INFO: Found 2 repositories to set up
INFO: Setup finished, exec ["just","build","-C","/worker/build/62d9cc5ae42928f8/root/home/.cache/just/protocol-dependent/generation-0/git-sha1/casf/0a/44c132e582626333967a2d8de7c7a97300553d","-P","lib/pkgconfig/hello.pc"]
INFO: Requested target is [["@","","",""],{}]
INFO: Analysed target [["@","","",""],{}]
INFO: Discovered 5 actions, 1 trees, 1 blobs
INFO: Building [["@","","",""],{}].
INFO: Processed 5 actions, 0 cache hits.
INFO: Artifacts built, logical paths are:

include/hello.hpp [358d39118af999403eb19bc97647340e08c64725:119:f]
lib/libhello.a [39be270eeff3c3a52871a120bc4318c100802a4a:5982:f]
lib/pkgconfig/fmt.cflags [8b137891791fe96927ad78e64b0aad7bded08bdc:1:f]
lib/pkgconfig/fmt.ldflags [734287fcf96cc358652d4c91c277824a311de558:7:f]
lib/pkgconfig/hello.pc [fb57462962400668bd67ba9bbaf36a3b81d5df2b:283:f]

prefix=/
libdir=${prefix}/lib
includedir=${prefix}/include
Name: hello
Version: unknown
Description: Pkg-config for hello, generated by JustBuild
URL: unknown
Cflags: -I${includedir} @${prefix}/lib/pkgconfig/fmt.cflags
Libs: ${libdir}/libhello.a @${prefix}/lib/pkgconfig/fmt.ldflags
$

8 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules

• Those defaults . . .
• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules

$ just-mr describe --main rules CC defaults - "ADD_CXXFLAGS" | Specifying this field extends dependencies from "base".
INFO: Performing repositories setup | Additional compilation flags for C++. Specifying this field Variables taken from the configuration
INFO: Found 2 repositories to set up | extends values from "base". - "ARCH"
INFO: Setup finished, exec ["just","describe","-C","/worker/build/628797c6a... - "ADD_LDFLAGS" - "HOST_ARCH"
[["@","rules","CC","defaults"],{}] is defined by user-defined rule ["@","ru... | Additional linker flags for linking the final CC library. Specifying - "TARGET_ARCH"

| this field extends values from "base". Result
| A rule to provide defaults. - "AR" - Artifacts
| All CC targets take their defaults for CC, CXX, flags, etc from | The archiver tool to use - Runfiles
| the target ["CC", "defaults"]. This is probably the only sensible - "PATH"
| use of this rule. As targets form a different root, the defaults | Path for looking up the compilers. Individual paths are joined $
| can be provided without changing this directory. | with ":". Specifying this field extends values from "base".
String fields - "SYSTEM_TOOLS"
- "CC" | List of tools ("CC", "CXX", or "AR") that should be taken from
| The C compiler to use | the system instead of from "toolchain" (if specified).

- "CXX" Target fields
| The C++ compiler to use - "base"

- "CFLAGS" | Other targets (using the same rule) to inherit values from.
| Flags for C compilation. Specifying this field overwrites - "toolchain"
| values from "base". | Optional toolchain directory. A collection of artifacts that provide

- "CXXFLAGS" | the tools CC, CXX, and AR (if needed). Note that only artifacts of
| Flags for C++ compilation. Specifying this field overwrites | the specified targets are considered (no runfiles etc.). Specifying
| values from "base". | this field extends artifacts from "base". If the toolchain

- "LDFLAGS" | supports cross-compilation, it should perform a dispatch on the
| Linker flags for linking the final CC library. Specifying this field | configuration variable "BUILD_ARCH" to determine for which
| overwrites values from "base". | architecture to generate code for.

- "ADD_CFLAGS" - "deps"
| Additional compilation flags for C. Specifying this field | Optional CC libraries any CC library and CC binary implicitly depend
| extends values from "base". | on. Those are typically "libstdc++" or "libc++" for C++ targets.

• Those defaults . . .
• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules

$ just-mr describe --main rules CC/proto defaults | this field overwrites values from "base".
INFO: Performing repositories setup - "PATH"
INFO: Found 2 repositories to set up | Path for looking up the proto compiler. Individual paths are joined
INFO: Setup finished, exec ["just","describe","-C","/worker/build/628797c6a... | with ":". Specifying this field extends values from "base".
[["@","rules","CC/proto","defaults"],{}] is defined by user-defined rule ["... Target fields

- "base"
| A rule to provide protoc/GRPC defaults. | Other targets (using the same rule) to inherit values from. If
| Used to implement ["CC/proto", "defaults"] for CC proto libraries | multiple targets are specified, for values that are overwritten (see
| and ["CC/proto", "service defaults"] for CC proto service libraries | documentation of other fields) the last specified value wins.
| (GRPC). - "toolchain"
String fields | Optional toolchain directory. A collection of artifacts that provide
- "PROTOC" | the protobuf compiler and the GRPC plugin (if needed). Note that only
| The proto compiler. If "toolchain" is empty, this field's value is | artifacts of the specified targets are considered (no runfiles etc.).
| considered the proto compiler name that is looked up in "PATH". If | Specifying this field extends artifacts from "base".
| "toolchain" is non-empty, this field's value is assumed to be the - "deps"
| relative path to the proto compiler in "toolchain". Specifying this | Optional CC libraries the resulting CC proto libraries implicitly
| field overwrites values from "base". | depend on. Those are typically "libprotobuf" for CC proto libraries

- "LDFLAGS" | and "libgrpc++" for CC proto service libraries. Specifying this
| Linker flags for linking the final CC library. Specifying this field | field extends dependencies from "base".
| overwrites values from "base". Variables taken from the configuration

- "ADD_LDFLAGS" - "ARCH"
| Additional linker flags for linking the final CC library. Specifying - "HOST_ARCH"
| this field extends values from "base". Result

- "GRPC_PLUGIN" - Artifacts
| The GRPC plugin for the proto compiler. If "toolchain" is empty, - Runfiles
| this field's value is considered to be the absolute system path to the
| plugin. If "toolchain" is non-empty, this field's value is assumed $
| to be the relative path to the plugin in "toolchain". Specifying

• Those defaults . . .
• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules

$ just-mr describe --main rules patch defaults Variables taken from the configuration
INFO: Performing repositories setup - "ARCH"
INFO: Found 2 repositories to set up - "HOST_ARCH"
INFO: Setup finished, exec ["just","describe","-C","/worker/build/628797c6a... Result
[["@","rules","patch","defaults"],{}] is defined by user-defined rule ["@",... - Artifacts

- Runfiles
| A rule to provide defaults.
| All targets take their defaults for PATCH from the target $
| ["patch", "defaults"]. This is probably the only sensible
| use of this rule. As targets form a different root, the defaults
| can be provided without changing this directory.
String fields
- "PATCH"
| The patch binary to use

- "PATH"
| Path for looking up the compilers. Individual paths are joined
| with ":". Specifying this field extends values from "base".

- "SYSTEM_TOOLS"
| List of tools ("PATCH") that should be taken from
| the system instead of from "toolchain" (if specified).

Target fields
- "base"
| Other targets (using the same rule) to inherit values from.

- "toolchain"
| Optional toolchain directory. A collection of artifacts that provide
| the tool PATCH. Note that only artifacts of
| the specified targets are considered (no runfiles etc.). Specifying
| this field extends artifacts from "base".

• Those defaults . . .
• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules

• Those defaults . . .
• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Tool Defaults
• Targets implicitly depend on the toolchain

. . . provided by the respective "defaults" target of the rules
• Those defaults . . .

• support inheriting from other defaults
• specify names of the tools
• specify path where to find them (if taken from host)
• set flags, as well as flags to add on top of what is inherited
• allow tools to be built by other targets

9 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools
• want to bundle—but writing just target files is e�ort!

 call the foreign tool
(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools
• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

$ just-mr describe --main rules --rule CC/foreign/make data - "jobs" - "HOST_ARCH" | The linker flags to add to the default ones.
INFO: Performing repositories setup | Number of jobs to run simultaneously. If omitted, Make's default - "CC" | For libraries that should be linked in a non-standard way; usually
INFO: Found 2 repositories to set up | number is used. | The name of the C compiler to be used. | adapting the default target ["CC", "defaults"] is the better
INFO: Setup finished, exec ["just","describe","-C","/worker/build/62c162591... - "pre_cmds" | If null, the respective value from ["CC", "defaults"] will be taken. | choice.
| Data produced by Configure and Make build and install. | List of commands executed in the project directory before calling - "CXX" - "ENV"
| | Configure or Make. Useful for renaming files or directories. Note | The name of the C++ compiler to be used. | The environment for any action generated.
| All variables accessible to commands and options are: "TMPDIR", | that data between "pre_cmds" and "post_cmds" can be exchanged via | If null, the respective value from ["CC", "defaults"] will be taken. | If null, the respective value from ["CC", "defaults"] will be taken.
| "LOCALBASE", "CC", "CXX", "CFLAGS", "CXXFLAGS", "LDFLAGS", | "$TMPDIR", which is uniquely reserved for this action. - "CFLAGS" - "AR"
| "AR", and "PREFIX". "LOCALBASE" contains the path to the - "post_cmds" | The flags for CC to be used instead of the default ones. | The archive tool to used for creating the library.
| installed artifacts from "deps". | List of commands executed in the install directory after successful | For libraries that should be built in a non-standard way; usually | If null, the respective value from ["CC", "defaults"] will be taken.
String fields | installation but before the output files are collected. Useful for | adapting the default target ["CC", "defaults"] is the better - "PREFIX"
- "subdir" | renaming files or directories. Note that data between "pre_cmds" and | choice | The absolute path that is used as prefix inside generated pkg-config

| The subdirectory that contains the configure and Makefile. Individual | "post_cmds" can be exchanged via "$TMPDIR", which is uniquely - "CXXFLAGS" | files. The default value for this variable is "/". This variable
| directory components are joined with "/". | reserved for this action. | The flags for CXX to be used instead of the default ones. | is ignored if the field "prefix" is set.

- "configure" - "out_files" | For libraries that should be built in a non-standard way; usually - "BUILD_POSITION_INDEPENDENT"
| Run ./configure if non-empty. | Paths to the produced output files. The paths are considered relative | adapting the default target ["CC", "defaults"] is the better | Build position independent code.

- "configure_options" | to the install directory. | choice. - "TIMEOUT_SCALE"
| The configure options (the "--prefix" option is automatically set. | Note that "out_files" and "out_dirs" may not overlap. - "LDFLAGS" | The scaling of the timeout for the invocation of the foreign build.
| Variables can be accessed via "$(<varname>)", e.g., "$(TMPDIR)" - "out_dirs" | The linker flags to be used instead of the default ones. | Defaults to 10.
| for variable "$TMPDIR". | Paths to the produced output directories. The paths are considered | For libraries that should be linked in a non-standard way; usually Result

- "targets" | relative to the install directory. | adapting the default target ["CC", "defaults"] is the better - Artifacts
| The Make targets to build in the specified order | Note that "out_files" and "out_dirs" may not overlap. | choice - Runfiles
| (default: ["install"]). Target fields - "ADD_CFLAGS"

- "prefix" - "project" | The flags to add to the default ones for CC. $
| The prefix used for the Make target. The path will be made absolute | The Make project directory. It should contain a single tree artifact | For libraries that should be built in a non-standard way; usually
| and individual directory components are joined with "/". If no - implict dependency | adapting the default target ["CC", "defaults"] is the better
| prefix is specified, the value from the config variable "PREFIX" is - ["@","rules","CC","defaults"] | choice.
| taken, with the default value being "/". - implict dependency - "ADD_CXXFLAGS"

- "options" - ["@","rules","CC/foreign","expand_exec"] | The flags to add to the default ones for CXX.
| Make options for the configuration phase - implict dependency | For libraries that should be built in a non-standard way; usually
| (e.g., ["-f", "Makefile", "ARCH=x86", "LD=$(CC)"]). Variables - ["@","rules","CC/foreign","defaults"] | adapting the default target ["CC", "defaults"] is the better
| can be accessed via "$(<varname>)", e.g., "$(TMPDIR)" for Variables taken from the configuration | choice.
| variable "$TMPDIR". - "ARCH" - "ADD_LDFLAGS"

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

$ just-mr describe --main rules --rule CC/foreign/make library | prefix is specified, the value from the config variable "PREFIX" is - "ldflags" Variables taken from the configuration | For libraries that should be linked in a non-standard way; usually
INFO: Performing repositories setup | taken, with the default value being "/". | Additional linker flags that are required for the consumer of the - "ARCH" | adapting the default target ["CC", "defaults"] is the better
INFO: Found 2 repositories to set up - "options" | produced libraries. - "HOST_ARCH" | choice.
INFO: Setup finished, exec ["just","describe","-C","/worker/build/62c162591... | Make options for the build phase. - "pkg-config" - "CC" - "ENV"
| Library produced by Configure and Make build and install. | (e.g., ["-f", "Makefile", "ARCH=x86"]) | Pkg-config file for optional infer of public cflags and ldflags. If | The name of the C compiler to be used. | The environment for any action generated.
| - "jobs" | multiple files are specified (e.g., one depends on the other), the | If null, the respective value from ["CC", "defaults"] will be taken. | If null, the respective value from ["CC", "defaults"] will be taken.
| All variables accessible to commands and options are: "TMPDIR", | Number of jobs to run simultaneously. If omitted, Make's default | first one is used as entry. Note that if this field is non-empty the - "CXX" - "AR"
| "LOCALBASE", "CC", "CXX", "CFLAGS", "CXXFLAGS", "LDFLAGS", | number is used. | tool "pkg-config" must be available in "PATH", which is taken | The name of the C++ compiler to be used. | The archive tool to used for creating the library
| "AR", and "PREFIX". "LOCALBASE" contains the path to the - "pre_cmds" | from ["CC", "defaults"] or the "ENV" variable. | If null, the respective value from ["CC", "defaults"] will be taken. | If null, the respective value from ["CC", "defaults"] will be taken.
| installed artifacts from "deps". | List of commands executed in the project directory before calling - "hdr_prefix" - "CFLAGS" - "PREFIX"
String fields | Configure or Make. Useful for renaming files or directories. Note | Prefix where headers will be installed by Make. Individual directory | The flags for CC to be used instead of the default ones. | The absolute path that is used as prefix inside generated pkg-config
- "subdir" | that data between "pre_cmds" and "post_cmds" can be exchanged via | components are joined with "/". Defaults to "include" if not set. | For libraries that should be built in a non-standard way; usually | files. The default value for this variable is "/". This variable

| The subdirectory that contains the configure and Makefile. Individual | "$TMPDIR", which is uniquely reserved for this action. - "lib_prefix" | adapting the default target ["CC", "defaults"] is the better | is ignored if the field "prefix" is set.
| directory components are joined with "/". - "post_cmds" | Prefix where libraries will be installed by Make. Individual | choice - "BUILD_POSITION_INDEPENDENT"

- "name" | List of commands executed in the install directory after successful | directory components are joined with "/". Defaults to "lib" if - "CXXFLAGS" | Build position independent code.
| The name of the library (without leading "lib" or trailing file name | installation but before the output files are collected. Useful for | not set. | The flags for CXX to be used instead of the default ones. - "TIMEOUT_SCALE"
| extension), also used as name for pkg-config files. | renaming files or directories (e.g., in case of SONAME mismatch). Note - "pc_prefix" | For libraries that should be built in a non-standard way; usually | The scaling of the timeout for the invocation of the foreign build.

- "version" | that data between "pre_cmds" and "post_cmds" can be exchanged via | Prefix where pkg-config files will be installed by Make. Individual | adapting the default target ["CC", "defaults"] is the better | Defaults to 10.
| The library version, used for pkg-config files. Individual version | "$TMPDIR", which is uniquely reserved for this action. | directory components are joined with "/". Defaults to | choice. Result
| components are joined with ".". - "out_hdrs" | "lib/pkgconfig" if not set. - "LDFLAGS" - Artifacts

- "stage" | Paths to produced public header files. The path is considered Target fields | Global ld flags, for common link args,such as -Wl,-z,noexecstack - Runfiles
| The logical location of the public headers and library files. | relative to the include directory, which be set via "hdr_prefix". - "project" - "ADD_CFLAGS"
| Individual directory components are joined with "/". | Note that "out_hdrs" and "out_hdr_dirs" may not overlap. | The Make project directory. It should contain a single tree artifact | The flags to add to the default ones for CC. $

- "configure" - "out_hdr_dirs" - "deps" | For libraries that should be built in a non-standard way; usually
| Run ./configure if non-empty. | Paths to produced public header directories. The path is considered | Public dependency on other CC libraries. | adapting the default target ["CC", "defaults"] is the better

- "configure_options" | relative to the include directory, which be set via "hdr_prefix". - implict dependency | choice.
| The configure options (the "--prefix" option is automatically set. | Note that "out_hdrs" and "out_hdr_dirs" may not overlap. - ["@","rules","CC","prebuilt/read_pkgconfig.py"] - "ADD_CXXFLAGS"

- "targets" - "out_libs" - implict dependency | The flags to add to the default ones for CXX.
| The Make targets to build in the specified order | Paths to produced library files. The path is considered relative - ["@","rules","CC","defaults"] | For libraries that should be built in a non-standard way; usually
| (default: ["install"]). | to the library directory, which be set via "lib_prefix". - implict dependency | adapting the default target ["CC", "defaults"] is the better

- "prefix" | Order matters in the case of one library depending on another. - ["@","rules","CC/foreign","expand_exec"] | choice.
| The prefix used for the Make target. The path will be made absolute - "cflags" - implict dependency - "ADD_LDFLAGS"
| and individual directory components are joined with "/". If no | List of compile flags set for this target and its consumers. - ["@","rules","CC/foreign","defaults"] | The linker flags to add to the default ones.

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

$ just-mr describe --main rules CC/foreign defaults - Runfiles
INFO: Performing repositories setup
INFO: Found 2 repositories to set up $
INFO: Setup finished, exec ["just","describe","-C","/worker/build/62c162591...
[["@","rules","CC/foreign","defaults"],{}] is defined by user-defined rule ...

| A rule to provide defaults for foreign rules.
| All foreign rules take their defaults for MAKE, CMAKE, etc from
| the target ["CC/foreign", "defaults"].
String fields
- "MAKE"

| The make binary to use
- "CMAKE"

| The cmake binary to use
- "PATH"

| Path for looking up the tools. Individual paths are joined with
| with ":". Specifying this field extends values from "base".

- "SYSTEM_TOOLS"
| List of tools ("MAKE", "CMAKE") that should be taken from
| the system instead of from "toolchain" (if specified).

Target fields
- "base"

| Other targets (using the same rule) to inherit values from.
- "toolchain"

| Optional toolchain directory. A collection of artifacts that provide
| the tools MAKE, CMAKE. Note that only artifacts of
| the specified targets are considered (no runfiles etc.). Specifying
| this field extends artifacts from "base".

Variables taken from the configuration
- "ARCH"
- "HOST_ARCH"
Result
- Artifacts

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

$ just-mr describe --main rules --rule CC/foreign/cmake data | installation but before the output files are collected. Useful for | The flags for CC to be used instead of the default ones. | The archive tool to used for creating the library.
INFO: Performing repositories setup | renaming files or directories. Note that data between "pre_cmds" and | For libraries that should be built in a non-standard way; usually | If null, the respective value from ["CC", "defaults"] will be taken.
INFO: Found 2 repositories to set up | "post_cmds" can be exchanged via "$TMPDIR", which is uniquely | adapting the default target ["CC", "defaults"] is the better - "BUILD_POSITION_INDEPENDENT"
INFO: Setup finished, exec ["just","describe","-C","/worker/build/62c162591... | reserved for this action. The CMake source and build directory can be | choice | Build position independent code.
| Data produced by CMake configure, build, and install. | accessed via "$CMAKE_SOURCE_DIR" and "$CMAKE_BINARY_DIR", - "CXXFLAGS" - "TIMEOUT_SCALE"
| | respectively. | The flags for CXX to be used instead of the default ones. | The scaling of the timeout for the invocation of the foreign build.
| All variables accessible to commands and options are: "TMPDIR", - "out_files" | For libraries that should be built in a non-standard way; usually | Defaults to 10.
| "LOCALBASE", "CC", "CXX", "CFLAGS", "CXXFLAGS", "LDFLAGS", | Paths to the produced output files. The paths are considered relative | adapting the default target ["CC", "defaults"] is the better Result
| and "AR". "LOCALBASE" contains the path to the installed artifacts | to the install directory. | choice. - Artifacts
| from "deps". | Note that "out_files" and "out_dirs" may not overlap. - "LDFLAGS" - Runfiles
String fields - "out_dirs" | The linker flags to be used instead of the default ones.
- "subdir" | Paths to the produced output directories. The paths are considered | For libraries that should be linked in a non-standard way; usually $

| The subdirectory that contains the entry CMakeLists.txt. Individual | relative to the install directory. | adapting the default target ["CC", "defaults"] is the better
| directory components are joined with "/". | Note that "out_files" and "out_dirs" may not overlap. | choice

- "options" Target fields - "ADD_CFLAGS"
| CMake options for the configuration phase. - "project" | The flags to add to the default ones for CC.
| (e.g., ["-GNinja", "-Ax64"]) | The CMake project directory. It should contain a single tree artifact | For libraries that should be built in a non-standard way; usually

- "defines" - implict dependency | adapting the default target ["CC", "defaults"] is the better
| CMake defines for the configuration phase. - ["@","rules","CC","defaults"] | choice.
| (e.g., ["CMAKE_BUILD_TYPE=Release"]) - implict dependency - "ADD_CXXFLAGS"

- "targets" - ["@","rules","CC/foreign","expand_exec"] | The flags to add to the default ones for CXX.
| The CMake targets to build in the specified order - implict dependency | For libraries that should be built in a non-standard way; usually
| (default: ["install"]). - ["@","rules","CC/foreign","defaults"] | adapting the default target ["CC", "defaults"] is the better

- "jobs" Variables taken from the configuration | choice.
| Number of jobs to run simultaneously. If omitted, CMake's default - "ARCH" - "ADD_LDFLAGS"
| number is used. - "HOST_ARCH" | The linker flags to add to the default ones.

- "pre_cmds" - "CC" | For libraries that should be linked in a non-standard way; usually
| List of commands executed in the project directory before calling | The name of the C compiler to be used. | adapting the default target ["CC", "defaults"] is the better
| CMake. Useful for renaming files or directories. Note that data | If null, the respective value from ["CC", "defaults"] will be taken. | choice.
| between "pre_cmds" and "post_cmds" can be exchanged via - "CXX" - "ENV"
| "$TMPDIR" which is uniquely reserved for this action. | The name of the C++ compiler to be used. | The environment for any action generated.

- "post_cmds" | If null, the respective value from ["CC", "defaults"] will be taken. | If null, the respective value from ["CC", "defaults"] will be taken.
| List of commands executed in the install directory after successful - "CFLAGS" - "AR"

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools

$ just-mr describe --main rules --rule CC/foreign/shell data - ["@","rules","CC/foreign","defaults"] - "ADD_LDFLAGS"
INFO: Performing repositories setup Variables taken from the configuration | The linker flags to add to the default ones.
INFO: Found 2 repositories to set up - "CC" | For libraries that should be linked in a non-standard way; usually
INFO: Setup finished, exec ["just","describe","-C","/worker/build/62c162591... | The name of the C compiler to be used. | adapting the default target ["CC", "defaults"] is the better
| Data produced by generic shell commands with toolchain support. | If null, the respective value from ["CC", "defaults"] will be taken. | choice.
| - "CXX" - "ENV"
| All variables accessible to commands and options are: "TMPDIR", | The name of the C++ compiler to be used. | The environment for any action generated.
| "LOCALBASE", "WORKDIR", "DESTDIR", "CC", "CXX", "CFLAGS", | If null, the respective value from ["CC", "defaults"] will be taken. | If null, the respective value from ["CC", "defaults"] will be taken.
| "CXXFLAGS", "LDFLAGS", and "AR". "LOCALBASE" contains the path - "CFLAGS" - "AR"
| to the staged artifacts from "localbase" and the installed artifacts | The flags for CC to be used instead of the default ones. | The archive tool to used for creating the library.
| from "deps". Furthermore, the variable "ACTION_DIR" points to the | For libraries that should be built in a non-standard way; usually | If null, the respective value from ["CC", "defaults"] will be taken.
| current action directory, if needed for achieving reproducibility. | adapting the default target ["CC", "defaults"] is the better - "PREFIX"
String fields | choice | The absolute path that is used as prefix inside generated pkg-config
- "cmds" - "CXXFLAGS" | files. The default value for this variable is "/". This variable

| List of commands to execute by "sh". Multiple commands will be | The flags for CXX to be used instead of the default ones. | is ignored if the field "prefix" is set.
| joined with the newline character. | For libraries that should be built in a non-standard way; usually - "BUILD_POSITION_INDEPENDENT"

- "outs" | adapting the default target ["CC", "defaults"] is the better | Build position independent code.
| Paths to the produced output files in "DESTDIR". | choice. - "TIMEOUT_SCALE"

- "out_dirs" - "LDFLAGS" | The scaling of the timeout for the invocation of the foreign build.
| Paths to the produced output directories in "DESTDIR". | The linker flags to be used instead of the default ones. | Defaults to 10.

Target fields | For libraries that should be linked in a non-standard way; usually Result
- "project" | adapting the default target ["CC", "defaults"] is the better - Artifacts

| The project directory. It should contain a single tree artifact. | choice - Runfiles
| It's path can be accessed via the "WORKDIR" variable. - "ADD_CFLAGS"

- "localbase" | The flags to add to the default ones for CC. $
| Artifacts to stage to "LOCALBASE". | For libraries that should be built in a non-standard way; usually

- "deps" | adapting the default target ["CC", "defaults"] is the better
| CC targets to install to "LOCALBASE". | choice.

- implict dependency - "ADD_CXXFLAGS"
- ["@","rules","CC","defaults"] | The flags to add to the default ones for CXX.

- implict dependency | For libraries that should be built in a non-standard way; usually
- ["@","rules","CC/foreign","expand_exec"] | adapting the default target ["CC", "defaults"] is the better

- implict dependency | choice.

• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Interact with Foreign Build Tools
• many interesting libraries are built using other build tools
• want to bundle—but writing just target files is e�ort!
 call the foreign tool

(one huge action, but updates kind-of rare, so shared caching saves)

10 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

Prologue Dramatis Personae Landscape Actions Epilogue

Toolchain
• Cooperation partners want to get the same binaries

. . . but work in di�erent environments

 Bootstrap all tools
. . . by first building the production compiler

using the host C compiler
• Details are a bit more complicated

e.g., modern C compilers are written in C++
• Now we have

• rules for foreign build systems
• bootstrapped modern gcc, clang, make, cmake,
busybox, python3

• an easy way to transitively import dependencies:
just-import-git, just-deduplicate-repositories

Is that the beginning of a new (“the distributed”) distribution?
And if so, is that good, bad, or xkcd/927?

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://xkcd.com/927/

Prologue Dramatis Personae Landscape Actions Epilogue

Toolchain
• Cooperation partners want to get the same binaries

. . . but work in di�erent environments
 Bootstrap all tools

. . . by first building the production compiler
using the host C compiler

• Details are a bit more complicated
e.g., modern C compilers are written in C++

• Now we have
• rules for foreign build systems
• bootstrapped modern gcc, clang, make, cmake,
busybox, python3

• an easy way to transitively import dependencies:
just-import-git, just-deduplicate-repositories

Is that the beginning of a new (“the distributed”) distribution?
And if so, is that good, bad, or xkcd/927?

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://xkcd.com/927/

Prologue Dramatis Personae Landscape Actions Epilogue

Toolchain
compilers/gcc-13.2.0-musl

combined_patched_sources

compilers/gcc-13.2.0-musl

separate_patched_sources

rules/gcc
CC

defaults

rules/gcc
CC/foreign
defaults

compilers/gcc-13.2.0-musl

gcc-musl

compilers/gcc-13.2.0-native

patched_sources

imports/binutils-latest

files

imports/gmp-6.3.0

files

imports/mpc-1.3.1

files

imports/mpfr-4.2.1

files

imports/musl-1.2.4

files

imports/musl-cross-make-fe915821

combined_sources_and_patches

compilers/gcc-13.2.0-musl

toolchain

compilers/gcc-13.2.0-musl

toolchain_cross

compilers/gcc-13.2.0-native

original_sources_and_patches

patches

gcc-13

gcc-latest-musl

toolchain

imports/config-3d5db9e

files

imports/linux-headers-4.19.88-1

files

imports/musl-cross-make-fe915821

separate_sources_and_patches

imports/musl-cross-make-fe915821

config.mak

patches

musl-cross-make-fe915821

imports/stage-0/gmp-4.2.4

files

imports/stage-0/mpc-0.8.1

files

imports/stage-0/mpfr-2.3.1

files

imports/stage-1/gmp-5.1.3

files

patches

gcc-10

patches

gcc-4.7.4

rules/gcc
CC

staged-gcc

stage-1/gcc

toolchain

rules/gcc
CC/foreign

staged-busybox

rules/gcc
CC/foreign
staged-make

stage-0/busybox

toolchain

stage-0/make

toolchain

rules/stage-0
CC

defaults

rules/stage-0
CC

defaults

rules/stage-0
CC/foreign
defaults

rules/stage-1
CC

defaults

rules/stage-1
CC

staged-gcc

rules/stage-1
CC

defaults

stage-0/gcc

toolchain

rules/stage-1
CC/foreign
defaults

rules/stage-1
CC/foreign

staged-busybox

rules/stage-1
CC/foreign
staged-make

scripts

bootstrap-ar

scripts

bootstrap-busybox

stage-0/binutils

binutils

stage-0/binutils

bootstrap

stage-0/binutils

staged_bootstrap_sources_and_flags

stage-0/busybox

bootstrap

stage-0/make

bootstrap

stage-0/binutils

bootstrap-ar

stage-0/binutils

files

stage-0/binutils

flag_files

stage-0/binutils

toolchain

stage-0/busybox

bootstrap-essentials

stage-0/busybox

staged_bootstrap_sources

stage-0/busybox

busybox

stage-0/busybox

files

stage-0/busybox

staged-gcc

stage-0/gcc

combined_patched_sources

stage-0/gcc

separate_sources_and_patches

stage-0/gcc

files

stage-0/gcc

gcc-4.7.4

stage-0/gcc

staged_sources_and_binutils

stage-0/make

bootstrap-make

stage-0/make

files

stage-0/make

make

stage-0/make

staged-localbase

stage-1/gcc

binutils

stage-1/gcc

gcc-10.2.0

stage-1/gcc

patched_separate_sources

stage-1/gcc

original_sources_and_patches

stage-1/gcc

patched_sources

• Cooperation partners want to get the same binaries
. . . but work in di�erent environments

 Bootstrap all tools
. . . by first building the production compiler

using the host C compiler
• Details are a bit more complicated

e.g., modern C compilers are written in C++

• Now we have
• rules for foreign build systems
• bootstrapped modern gcc, clang, make, cmake,
busybox, python3

• an easy way to transitively import dependencies:
just-import-git, just-deduplicate-repositories

Is that the beginning of a new (“the distributed”) distribution?
And if so, is that good, bad, or xkcd/927?

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://xkcd.com/927/

Prologue Dramatis Personae Landscape Actions Epilogue

Toolchain
compilers/gcc-13.2.0-musl

combined_patched_sources

compilers/gcc-13.2.0-musl

separate_patched_sources

rules/gcc
CC

defaults

rules/gcc
CC/foreign
defaults

compilers/gcc-13.2.0-musl

gcc-musl

compilers/gcc-13.2.0-native

patched_sources

imports/binutils-latest

files

imports/gmp-6.3.0

files

imports/mpc-1.3.1

files

imports/mpfr-4.2.1

files

imports/musl-1.2.4

files

imports/musl-cross-make-fe915821

combined_sources_and_patches

compilers/gcc-13.2.0-musl

toolchain

compilers/gcc-13.2.0-musl

toolchain_cross

compilers/gcc-13.2.0-native

original_sources_and_patches

patches

gcc-13

gcc-latest-musl

toolchain

imports/config-3d5db9e

files

imports/linux-headers-4.19.88-1

files

imports/musl-cross-make-fe915821

separate_sources_and_patches

imports/musl-cross-make-fe915821

config.mak

patches

musl-cross-make-fe915821

imports/stage-0/gmp-4.2.4

files

imports/stage-0/mpc-0.8.1

files

imports/stage-0/mpfr-2.3.1

files

imports/stage-1/gmp-5.1.3

files

patches

gcc-10

patches

gcc-4.7.4

rules/gcc
CC

staged-gcc

stage-1/gcc

toolchain

rules/gcc
CC/foreign

staged-busybox

rules/gcc
CC/foreign
staged-make

stage-0/busybox

toolchain

stage-0/make

toolchain

rules/stage-0
CC

defaults

rules/stage-0
CC

defaults

rules/stage-0
CC/foreign
defaults

rules/stage-1
CC

defaults

rules/stage-1
CC

staged-gcc

rules/stage-1
CC

defaults

stage-0/gcc

toolchain

rules/stage-1
CC/foreign
defaults

rules/stage-1
CC/foreign

staged-busybox

rules/stage-1
CC/foreign
staged-make

scripts

bootstrap-ar

scripts

bootstrap-busybox

stage-0/binutils

binutils

stage-0/binutils

bootstrap

stage-0/binutils

staged_bootstrap_sources_and_flags

stage-0/busybox

bootstrap

stage-0/make

bootstrap

stage-0/binutils

bootstrap-ar

stage-0/binutils

files

stage-0/binutils

flag_files

stage-0/binutils

toolchain

stage-0/busybox

bootstrap-essentials

stage-0/busybox

staged_bootstrap_sources

stage-0/busybox

busybox

stage-0/busybox

files

stage-0/busybox

staged-gcc

stage-0/gcc

combined_patched_sources

stage-0/gcc

separate_sources_and_patches

stage-0/gcc

files

stage-0/gcc

gcc-4.7.4

stage-0/gcc

staged_sources_and_binutils

stage-0/make

bootstrap-make

stage-0/make

files

stage-0/make

make

stage-0/make

staged-localbase

stage-1/gcc

binutils

stage-1/gcc

gcc-10.2.0

stage-1/gcc

patched_separate_sources

stage-1/gcc

original_sources_and_patches

stage-1/gcc

patched_sources

• Cooperation partners want to get the same binaries
. . . but work in di�erent environments

 Bootstrap all tools
. . . by first building the production compiler

using the host C compiler
• Details are a bit more complicated

e.g., modern C compilers are written in C++
• Now we have

• rules for foreign build systems
• bootstrapped modern gcc, clang, make, cmake,
busybox, python3

• an easy way to transitively import dependencies:
just-import-git, just-deduplicate-repositories

Is that the beginning of a new (“the distributed”) distribution?
And if so, is that good, bad, or xkcd/927?

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://xkcd.com/927/

Prologue Dramatis Personae Landscape Actions Epilogue

Toolchain
compilers/gcc-13.2.0-musl

combined_patched_sources

compilers/gcc-13.2.0-musl

separate_patched_sources

rules/gcc
CC

defaults

rules/gcc
CC/foreign
defaults

compilers/gcc-13.2.0-musl

gcc-musl

compilers/gcc-13.2.0-native

patched_sources

imports/binutils-latest

files

imports/gmp-6.3.0

files

imports/mpc-1.3.1

files

imports/mpfr-4.2.1

files

imports/musl-1.2.4

files

imports/musl-cross-make-fe915821

combined_sources_and_patches

compilers/gcc-13.2.0-musl

toolchain

compilers/gcc-13.2.0-musl

toolchain_cross

compilers/gcc-13.2.0-native

original_sources_and_patches

patches

gcc-13

gcc-latest-musl

toolchain

imports/config-3d5db9e

files

imports/linux-headers-4.19.88-1

files

imports/musl-cross-make-fe915821

separate_sources_and_patches

imports/musl-cross-make-fe915821

config.mak

patches

musl-cross-make-fe915821

imports/stage-0/gmp-4.2.4

files

imports/stage-0/mpc-0.8.1

files

imports/stage-0/mpfr-2.3.1

files

imports/stage-1/gmp-5.1.3

files

patches

gcc-10

patches

gcc-4.7.4

rules/gcc
CC

staged-gcc

stage-1/gcc

toolchain

rules/gcc
CC/foreign

staged-busybox

rules/gcc
CC/foreign
staged-make

stage-0/busybox

toolchain

stage-0/make

toolchain

rules/stage-0
CC

defaults

rules/stage-0
CC

defaults

rules/stage-0
CC/foreign
defaults

rules/stage-1
CC

defaults

rules/stage-1
CC

staged-gcc

rules/stage-1
CC

defaults

stage-0/gcc

toolchain

rules/stage-1
CC/foreign
defaults

rules/stage-1
CC/foreign

staged-busybox

rules/stage-1
CC/foreign
staged-make

scripts

bootstrap-ar

scripts

bootstrap-busybox

stage-0/binutils

binutils

stage-0/binutils

bootstrap

stage-0/binutils

staged_bootstrap_sources_and_flags

stage-0/busybox

bootstrap

stage-0/make

bootstrap

stage-0/binutils

bootstrap-ar

stage-0/binutils

files

stage-0/binutils

flag_files

stage-0/binutils

toolchain

stage-0/busybox

bootstrap-essentials

stage-0/busybox

staged_bootstrap_sources

stage-0/busybox

busybox

stage-0/busybox

files

stage-0/busybox

staged-gcc

stage-0/gcc

combined_patched_sources

stage-0/gcc

separate_sources_and_patches

stage-0/gcc

files

stage-0/gcc

gcc-4.7.4

stage-0/gcc

staged_sources_and_binutils

stage-0/make

bootstrap-make

stage-0/make

files

stage-0/make

make

stage-0/make

staged-localbase

stage-1/gcc

binutils

stage-1/gcc

gcc-10.2.0

stage-1/gcc

patched_separate_sources

stage-1/gcc

original_sources_and_patches

stage-1/gcc

patched_sources

• Cooperation partners want to get the same binaries
. . . but work in di�erent environments

 Bootstrap all tools
. . . by first building the production compiler

using the host C compiler
• Details are a bit more complicated

e.g., modern C compilers are written in C++
• Now we have

• rules for foreign build systems
• bootstrapped modern gcc, clang, make, cmake,
busybox, python3

• an easy way to transitively import dependencies:
just-import-git, just-deduplicate-repositories

Is that the beginning of a new (“the distributed”) distribution?
And if so, is that good, bad, or xkcd/927?

11 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://xkcd.com/927/

Prologue Dramatis Personae Landscape Actions Epilogue

Thank You!
• Sources

• https://github.com/just-buildsystem/justbuild
• https://github.com/just-buildsystem/rules-cc
• https://github.com/just-buildsystem/bootstrappable-toolchain

• Background
• https://bootstrappable.org/
• https://reproducible-builds.org/

12 HUAWEI TECHNOLOGIES DÜSSELDORF GMBH, Munich Research Center

https://github.com/just-buildsystem/justbuild
https://github.com/just-buildsystem/rules-cc
https://github.com/just-buildsystem/bootstrappable-toolchain
https://bootstrappable.org/
https://reproducible-builds.org/

	Prologue
	Background

	Dramatis Personae
	Linux Distributions
	Industrial Software Development

	Landscape
	Existing Approaches

	Actions
	Flexible Repository Configuration
	pkg-config
	Tool Defaults
	Foreign Build Tools
	Bootstrapped Toolchain

	Epilogue
	Thank you

