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Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value  build can use it

load("//:resolved.bzl", "resolved)

for wsentry in resolved:

repo = wsentry["original attributes"]["name"]

for actual in wsentry["repositories"]:

. . .

• update dependency snapshot: bazel sync
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(as of Bazel 0.19; get the latest rc now)
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The Future

We have many ideas for the future. . .

• more rules to return versions (besides git repository)

• meta-rules (“These packages and their dependencies”)

• source-like vs configure-like rules

• enable resolved.bzl by default

• dependency discovery and install targets (autotools-like)
Probably can be done in Starlark right now.

• . . .

. . . but we need your input to decide what is important. Talk to us!
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