
Bazel External Repositories

Bazel and External Repositories
Which version do you get?

Klaus Aehlig

October 9–10, 2018

Bazel External Repositories

Imagine. . .
• You freshly check out your project.

• The WORKSPACE file describes the branches followed.
• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.

• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.

load("@bazel tools//tools/build defs/repo:git.bzl",

"git repository")

. . .
git repository(

name = "com google protobuf",

remote = "https://github.com/google/protobuf",

branch = "master",

patch cmds = ["find . -name ’*.sh’ -exec . . . "],
)

. . .

• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.

load("@bazel tools//tools/build defs/repo:git.bzl",

"git repository")

. . .
git repository(

name = "com google protobuf",

remote = "https://github.com/google/protobuf",

branch = "master",

patch cmds = ["find . -name ’*.sh’ -exec . . . "],
)

. . .

Fully abstract description!
Only to be changed, when a new dependency is added.

• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.

• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

. . . and you build at the latest known-good snapshot!

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... for an older version of your project

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... for an older version of your project
. . . and you build against the snapshot used at that time!

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored

• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value

 build can use it

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value

 build can use it

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches

• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value

 build can use it

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value

 build can use it

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value

 build can use it

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //...

• WORKSPACE file ignored
• resolved.bzl read instead (generated, committed!)

• precise commit ids, instead of branches
• hashes of the generated directory
 definitely the same code, even with transformations!

• actually, just a Starlark value build can use it

load("//:resolved.bzl", "resolved)

for wsentry in resolved:

repo = wsentry["original attributes"]["name"]

for actual in wsentry["repositories"]:

. . .

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)

• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)
• update dependency snapshot: bazel sync

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)
• update dependency snapshot: bazel sync

$ bazel sync

. . .
INFO: Repository rule ’com google protobuf’

returned: {"commit": "c27d6a56. . . ", . . . }
. . .
$

• WORKSPACE file fully executed, unconditionally.
• versions (and hashes!) recorded in resolved.bzl
• meaningful diff

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)
• update dependency snapshot: bazel sync

$ bazel sync

. . .
INFO: Repository rule ’com google protobuf’

returned: {"commit": "c27d6a56. . . ", . . . }
. . .
$

• WORKSPACE file fully executed, unconditionally.

• versions (and hashes!) recorded in resolved.bzl
• meaningful diff

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)
• update dependency snapshot: bazel sync

$ bazel sync

. . .
INFO: Repository rule ’com google protobuf’

returned: {"commit": "c27d6a56. . . ", . . . }
. . .
$

• WORKSPACE file fully executed, unconditionally.
• versions (and hashes!) recorded in resolved.bzl

• meaningful diff

Bazel External Repositories

Imagine. . .
• You freshly check out your project.
• The WORKSPACE file describes the branches followed.
• bazel build //... (correct snapshot)
• update dependency snapshot: bazel sync

$ bazel sync

. . .
INFO: Repository rule ’com google protobuf’

returned: {"commit": "c27d6a56. . . ", . . . }
. . .
$

• WORKSPACE file fully executed, unconditionally.
• versions (and hashes!) recorded in resolved.bzl
• meaningful diff

Bazel External Repositories

This is reality!
(as of Bazel 0.19; get the latest rc now)

Added as an experimental opt-in, controlled by .bazelrc

sync --experimental repository resolved file=resolved.bzl

build --experimental resolved file instead of workspace=resolved.bzl

build --experimental repository hash file=resolved.bzl

build --experimental verify repository rules=. . .

Bazel External Repositories

This is reality!
(as of Bazel 0.19; get the latest rc now)

Added as an experimental opt-in, controlled by .bazelrc

sync --experimental repository resolved file=resolved.bzl

build --experimental resolved file instead of workspace=resolved.bzl

build --experimental repository hash file=resolved.bzl

build --experimental verify repository rules=. . .

Bazel External Repositories

This is reality!
(as of Bazel 0.19; get the latest rc now)

Added as an experimental opt-in, controlled by .bazelrc

sync --experimental repository resolved file=resolved.bzl

build --experimental resolved file instead of workspace=resolved.bzl

build --experimental repository hash file=resolved.bzl

build --experimental verify repository rules=. . .

Bazel External Repositories

The Future

We have many ideas for the future. . .

• more rules to return versions (besides git repository)

• meta-rules (“These packages and their dependencies”)

• source-like vs configure-like rules

• enable resolved.bzl by default

• dependency discovery and install targets (autotools-like)
Probably can be done in Starlark right now.

• . . .

. . . but we need your input to decide what is important. Talk to us!

	Bazel External Repositories
	Resolved Files
	The Future

