
The Completeness Theorem of First-Order Logic

Klaus Aehlig

Summer 2018

1 First-Order Logic

1.1 Syntax

Definition 1.1.1 (First-order language). A first-order language L is given by

• a set FL of function symbols with an arity function] : FL → N, and

• a set RL of relation symbols with an arity function] : RL → N,

where FL ∩RL = ∅.

We also always implicitly assume that FL and RL are disjoint form all
other syntactical symbols we introduce. This can always be achieved by an
appropriate disjoint-sum construction.

We use f, g, h, . . . to denote function symbols and R, S, . . . to denote relation
symbols.

Notation 1.1.2. For L a first-order language we use the notations F (n)
L =

{f ∈ FL |](f) = n} and R(n)
L = {R ∈ RL |](R) = n}.

We assume a countable infinite set Var of first-order variables. Elements of
Var are denoted by x, y, z, . . .

Definition 1.1.3 (L-terms). For a first-order language L we define the set of
L-terms inductively as follows.

• Every x ∈ Var is an L-term.

• If f ∈ F (n)
L and t1, . . . tn are L-terms, then so is ft1 . . . tn.

We use s, t, . . . to denote terms.

Lemma 1.1.4. If s1, . . . , sn, t1, . . . tn are L-terms such that s1 . . . sn = t1 . . . tn,
then si = ti for 1 ≤ i ≤ n.

1

Proof. Induction on the number of symbols of s1 . . . sn. The claim is trivial for
n = 0, so let n ≥ 1. If s1 is a Variable, then t1 has to be the same variable
(as we assumed variables to be disjoint from the function symbols), and the
claim follows by induction hypothesis. Otherwise, there are f, g, s′1, . . . , s

′
k, and

t′1, . . . , t
′
` such that s1 = fs′1 . . . s

′
k and t1 = gt′1 . . . t

′
`. So fs′1 . . . s

′
ks2 . . . sn =

gt′1 . . . t
′
`t2 . . . tn. Hence f = g, hence k =](f) =](g) = ` and the claim follow

by induction hypothesis since s′1 . . . s
′
ks2 . . . sn = t′1 . . . t

′
`t2 . . . tn.

Lemma 1.1.5. Every L-term t is either a variable or there exist unique f,
t1, . . . , tn such that t = ft1 . . . tn.

Proof. Existence follows from the definition of terms. As for uniqueness, assume
ft1 . . . tn = gs1 . . . sm. Then f = g, hence n =](f) =](g) = m and the claim
follows from Lemma 1.1.4.

In particular, even though we think of terms as sequences of symbols, we
can do induction on the build-up in their inductive definition.

Definition 1.1.6 (L-formulae). The set of L-formulae is inductively defined as
follows.

• If R ∈ R(n)
L and t1, . . . tn are L-terms, then Rt1 . . . tn and ¬Rt1 . . . tn are

L-formulae.

• If A and B are L-formualae, then so are ∧AB and ∨AB.

• If A is an L-formula and x is a variable, the ∀xA and ∃xA are L-formulae.

We denote formulae by A, B, C, . . . As in Lemma 1.1.5 we can show unique
readability of formulae.

Definition 1.1.7 (¬A). By induction of the definition of A we define a formula
¬A as follows.

• ¬(Rt1 . . . tn) = ¬Rt1 . . . tn and ¬(¬Rt1 . . . tn) = Rt1 . . . tn

• ¬(∧AB) = ∨(¬A)(¬B) and ¬(∨AB) = ∧(¬A)(¬B).

• ¬(∀xA) = ∃x(¬A) and ¬(∃xA) = ∀x(¬A).

Remark 1.1.8. It holds that ¬(¬A) = A.

Proof. Induction on A.

We also use the abbreviations A∧B, A∨B, ∃xA, and ∀xA for ∧AB, ∨AB,
∃xA, and ∀xA, respectively. Moreover, we use the abbreviation A → B for
(¬A) ∨B.

2

1.2 Semantics

Definition 1.2.1 (L-structure). Let L be a first-order language. An L-structure
M is given by

• a non-empty set |M|, called the universe of M,

• a function fM : |M|](f) → |M| for every function symbol f of L, and

• a set RM ⊆ |M|](R) for every relation symbol R of L.

Definition 1.2.2 (M-valuation). If M is structure, an M-valuation is a function
ξ : Var→ |M|.

Definition 1.2.3 (tM,ξ). For t an L-term, M an L-structure, and ξ an M-
valuation we define tM,ξ ∈ |M| by induction on t as follows.

xM,ξ = ξ(x)

(ft1 . . . tn)
M,ξ

= fM(t1
M,ξ, . . . , tn

M,ξ)

Definition 1.2.4 (ξax). For ξ an M-valuation, x ∈ Var, and a ∈ |M| we define
an M-valuation ξax as follows.

ξax (y) =

{
a x = y

ξ(y) otherwise

Definition 1.2.5 (AM,ξ). For A an L-formula, M an L-structure and ξ an
M-valuation we define AM,ξ ∈ {0, 1} by induction on A as follows.

(Rt1 . . . tn)
M,ξ

=

{
1 (t1

M,ξ, . . . , tn
M,ξ) ∈ RM

0 otherwise

(¬Rt1 . . . tn)
M,ξ

=

{
1 (t1

M,ξ, . . . , tn
M,ξ) 6∈ RM

0 otherwise

(∧AB)
M,ξ

= min{AM,ξ, BM,ξ}
(∨AB)

M,ξ
= max{AM,ξ, BM,ξ}

(∀xA)
M,ξ

= min{AM,ξax | a ∈ |M|}
(∃xA)

M,ξ
= max{AM,ξax | a ∈ |M|}

Definition 1.2.6 (M, ξ |= A). We write M, ξ |= A to denote AM,ξ = 1.

Remark 1.2.7. Immediately from the definition we note the following.

• M, ξ |= A ∧B if and only if M, ξ |= A and M, ξ |= B.

• M, ξ |= A ∨B if and only if M, ξ |= A or M, ξ |= B.

• M, ξ |= ∀xA if and only if for all a ∈ |M| it holds that M, ξax |= A.

3

• M, ξ |= ∃xA if and only if for some a ∈ |M| it holds that M, ξax |= A.

Lemma 1.2.8. M, ξ |= ¬A holds if and only if M, ξ |= A does not hold.

Proof. Induction on A.

Definition 1.2.9 (M, ξ |= Θ). If Θ is a set of L-formulae, M an L-structure
and ξ an M-valuation, we write M, ξ |= Θ to denote that for all A ∈ Θ it holds
that M, ξ |= A.

Definition 1.2.10. A set Θ of L-formulae is said to have a model, if there is
an L-structure M and an M-valuation ξ such that M, ξ |= Θ.

Definition 1.2.11 (Θ |= A). If Θ is a set of L-formulae, and A an L-formula,
we write Θ |= A to denote that for all L-structures M and M-valuations ξ for
which M, ξ |= Θ holds, it also holds that M, ξ |= A.

2 The Tait Calculus

2.1 Derivations

Definition 2.1.1. For an L-term t we define a finite set FV(t) ⊆ Var, the set
of free variables of t, inductively as follows.

• FV(x) = {x}.

• FV(ft1 . . . tn) = FV(t1) ∪ . . . ∪ FV(tn).

Definition 2.1.2. For an L-formula A we define a finite set FV(A) ⊆ Var, the
set of free variables of A, inductively as follows.

• FV(Rt1 . . . tn) = FV(¬Rt1 . . . tn) = FV(t1) ∪ . . . ∪ FV(tn)

• FV(∧AB) = FV(∨AB) = FV(A) ∪ FV(B)

• FV(∀xA) = FV(∃xA) = FV(A) \ {x}

Definition 2.1.3. For a finite set ∆ of L-formulae, we define FV(∆) ⊆ Var,
the set of free variables of ∆, by FV({A1, . . . , An}) = FV(A1) ∪ . . . ∪ FV(An)

Definition 2.1.4. We call a term, a formula, or a finite set of formulae closed
if the set of free variables is empty.

Definition 2.1.5 (s[t/x]). For s and t terms, and x a variable we define a term
s[t/x] by induction on s as follows.

• y[t/x] =

{
t x = y

y x 6= y

• (fs1 . . . sn)[t/x] = f(s1[t/x]) . . . (sn[t/x])

4

Definition 2.1.6 (A[t/x]). For A a formula, t a term, and x a variable we define
a term s[t/x] by induction on A as follows.

• (Rs1 . . . sn)[t/x] = R(s1[t/x]) . . . (sn[t/x])

• (¬Rs1 . . . sn)[t/x] = ¬R(s1[t/x]) . . . (sn[t/x])

• (∧AB)[t/x] = ∧(A[t/x])(B[t/x])

• (∨AB)[t/x] = ∨(A[t/x])(B[t/x])

• (∀yA)[t/x] = ∀z(A[z/y][t/x]), where z is the smallest variable such that
z 6∈ FV(∀yA) ∪ FV(t) ∪ {x}.

• (∃yA)[t/x] = ∃z(A[z/y][t/x]), where z is the smallest variable such that
z 6∈ FV(∃yA) ∪ FV(t) ∪ {x}.

Remark 2.1.7. Immediately from the definition of A[t/x], we note that the
number of logical symbols is not changed by substitution.

Definition 2.1.8 (Proof symbols). If L is a first order language, the language
TL of proofs is given by the function symbols IRt1...t](R) , ∧A,B , ∨A,B , ∀x,y,A,
∃x,t,A, and CA where R is an L-relation symbol, the ti are L-terms, and x is a
variable, and A and B are L-formulae.

Here](IRt1...t](R)) = 0,](∧A,B) =](CA) = 2, and](∨A,B) =](∀x,y,A) =
](∃x,t,A) = 1.

For ∆ and Γ finite set of L-formulae, and A an L-formula, we write ∆,Γ as
an abbreviation for ∆ ∪ Γ and ∆, A as an abbreviation for ∆ ∪ {A}.

Definition 2.1.9 (Tait Calculus for first-order logic). Given a first-order lan-
guage L, we inductively define the relation d ` ∆ for d a closed TL-term and ∆
a finite set of L-formulae as follows.

• IRt1...t](R) ` ∆, Rt1 . . . t](R),¬Rt1 . . . t](R)

• If d ` ∆, A and d′ ` Γ, B, then ∧A,Bdd′ ` ∆,Γ, A ∧B.

• If d ` ∆, A,B then ∨A,Bd ` ∆, A ∨B.

• If d ` ∆, A[y/x] and y 6∈ FV(∆,∀xA), then ∀x,y,Ad ` ∆,∀xA.

• If d ` ∆, A[t/x], then ∃x,t,Ad ` ∆,∃xA.

• If d ` ∆, A and d′ ` Γ,¬A, then CAdd
′ ` ∆,Γ.

Proposition 2.1.10. If d ` ∆ and ∆′ is obtained form ∆ by consistent renam-
ing of variables, then d′ ` ∆′ where d and d′ only differ in naming of variables.

Proof. Induction on the inductive Definition 2.1.9. In the case ∀x,y,Ad we pick
a new y not occurring in the renamed context and obtain a renaming of the
premise. In the case of ∃x,t,Ad we rename the witness t according to the renaming
and use that substitution and renaming fit together.

5

Proposition 2.1.11 (Weakening). If d ` ∆, then d′ ` ∆,Γ where d′ is obtained
from d by renaming of variables.

Proof. Induction on the inductive Definition 2.1.9. In the case ∀x,y,Ad we might
have to pick a new y if y ∈ FV(Γ); this is possible as FV(Γ,∆) is finite. So
we need a renaming of the proof obtained by induction hypothesis, which is
provided by Proposition 2.1.10.

Remark 2.1.12. By Proposition 2.1.11, we may, without loss of generality,
assume that in Definition 2.1.9 the side formulas ∆ and Γ are always the full set
of formulas concluded (in particular, only new formulae are added when stepping
from a proof to its subproofs). With this assumption, we can reconstruct the
derived set of formulae for all subproofs in the inductive Definition 2.1.9 of d ` ∆
from d and ∆.

Definition 2.1.13 (¬∆). If ∆ = {A1, . . . , An} is a finite set of formulae, we
define ¬∆ for {¬A1, . . . ,¬An}.

Definition 2.1.14 (Θ ` ∆). For Θ a set of formulae and ∆ a finite set of
formulae, we write Θ ` ∆, if for some finite Γ ⊆ Θ and some proof term d have
d ` ¬Γ,∆.

Remark 2.1.15. Immediately from the definition we note that, if Θ ⊆ Θ′ and
Θ ` ∆ then Θ′ ` ∆.

Definition 2.1.16 (Θ ` A). For Θ a set of formulae and A a formula, we write
Θ ` A for Θ ` {A}.

Proposition 2.1.17 (Identity). There is a family IA of proof terms such that
IA ` A,¬A.

Proof. Induction on A. We choose IRt1...t](R) = IRt1...t](R) , IA∧B =
∨¬A,¬B∧A,BIAIB , and I∀xA = ∀x,x,A∃x,x,¬AIA.

Corollary 2.1.18. A ` A

Proposition 2.1.19. If Θ ` A ∧B then Θ ` A and Θ ` B.

Proof. Assume d ` ¬Γ, A ∧B. Then CA∧Bd∨A,BIA ` ¬Γ, A and
CA∧Bd∨A,BIB ` ¬Γ, B.

Proposition 2.1.20. If Θ ` ∀xA then Θ ` A[t/x].

Proof. Assume d ` ¬Γ,∀xA. Then C∀xAd∃x,t,¬AIA[t/x] ` ¬Γ, A[t/x].

Proposition 2.1.21 (Modus ponens). If Θ ` A→ B and Θ ` A then Θ ` B.

Proof. Assume d ` ¬Γ, A→ B and d′ ` ¬∆, A. Then CAd
′CA→Bd∧A,¬BIAIB `

¬Γ,¬∆, B.

6

2.2 Soundness

Lemma 2.2.1. For all variables x, all L-terms s and t, all L-structures M and
all M-valuations ξ the following holds.

(s[t/x])
M,ξ

= sM,ξt
M,ξ

x

Proof. Induction on s.

Lemma 2.2.2 (Coincidence). Let ξ and ξ′ be M-valuations such that for all
x ∈ FV(t) it holds that ξ(x) = ξ′(x). Then tM,ξ = tM,ξ′

Proof. Induction on t.

Lemma 2.2.3 (Coincidence). Let ξ and ξ′ be M-valuations such that for all
x ∈ FV(A) it holds that ξ(x) = ξ′(x). Then AM,ξ = AM,ξ′

Proof. Induction on A. The only non-trivial case is ∀xA, the case ∃xA is similar.
Indeed, (∀xA)

M,ξ
= min{AM,ξax | a ∈ |M|}, so it is enough to show that ξax

and ξ′
a
x coincide on FV(A) ⊆ FV(∀xA) ∪ {x} for all a. But since ξax (x) = a =

ξ′
a
x(x) this follows from the premise.

Lemma 2.2.4. For all variables x, all L-terms t, all L-formulae A, all L-
structures M and all M-valuations ξ the following holds.

(A[t/x])
M,ξ

= AM,ξt
M,ξ

x

Proof. Induction on the number of logical symbols in A, keeping all other pa-
rameters universally quantified. The only non-trivial case is ∀xA, the case ∃xA
is similar.

We have (∀yA)[t/x]
M,ξ

= ∀z(A[z/y][t/x])
M,ξ

= min{A[z/y][t/x]
M,ξaz |

a ∈ |M|}. By Induction hypothesis (compare Remark 2.1.7), we obtain

A[z/y][t/x]
M,ξaz = A[z/y]

M,ξaz
t
M,ξaz

x = A
M,ξaz

t
M,ξaz

x

a

y where we used ξaz
tM,ξaz

x (z) = a
since z 6= x. By coincidence for terms, we have tM,ξaz = tM,ξ, as z 6∈ FV(t).

Hence A[z/y][t/x]
M,ξaz = · · · = A

M,ξaz
tM,ξ

x

a

y = AM,ξt
M,ξ

x

a

y where for the last
equation we used that, if z = y the valuations are equal and if z 6= y, then
z 6∈ FV(A) ⊆ FV(∀yA) ∪ {y} and the equality follows from coincidence for
formulae. The claim follows.

Theorem 2.2.5 (Soundness). Let L be a first-order language. If d ` A1, . . . , An
for L-formulae A1, . . . , An, then, for all L-structures M and all M-valuations
ξ there is an 1 ≤ i ≤ n such that M, ξ |= Ai.

Proof. By induction on d.
Case ∃x,t,Ad. Let M and ξ be given. If M, ξ |= A[t/x], then, by Lemma 2.2.4,

M, ξt
M,ξ

x |= A, hence M, ξ |= ∃xA.
Case ∀x,y,Ad. Let M and ξ be given. If for all a ∈ |M| we have M, ξay |=

A[y/x], then we note A[y/x]
M,ξay = AM,ξay

a

x = AM,ξax since y 6∈ FV(∀xA). Hence

7

M, ξ |= ∀xA. If, on the other hand, for some a ∈ |M| is not the case that
M, ξay |= A[y/x], then M, ξay |= Ai for some of side formula Ai. But then also
M, ξ |= Ai since y 6∈ Ai and the claim follows.

The remaining cases are simple.

Corollary 2.2.6. If Θ ` A then Θ |= A.

Proof. Assume d ` ¬B1, . . . ,¬Bn, A for some {B1, . . . , Bn} ⊆ Θ. Let M and ξ
with M, ξ |= Θ be given. We have to show M, ξ |= A. By Theorem 2.2.5 we
have M, ξ |= A or M, ξ |= ¬Bi for some i. The latter, however, is impossible
(Lemma 1.2.8) since we have M, ξ |= Θ, hence M, ξ |= Bi.

3 The Completeness Theorem

3.1 Maximally consistent sets

Definition 3.1.1. A set Θ of formulae is called inconsistent, if Θ ` ∅. A set Θ
is called consistent, if it is not inconsistent.

Remark 3.1.2. Immediately from the definition we note that a set is inconsis-
tent if and only if some finite subset is.

Definition 3.1.3. A set Θ of L-formulae is called a maximally consistent set of
L-formulae, if Θ is consistent, and for every set Θ′ of L-formulae with Θ′ ⊇ Θ
that is also consistent, we have Θ′ = Θ.

Definition 3.1.4. A set Θ of formulae shows witnesses, if for every formula
∃xA ∈ Θ there is a term t such that A[t/x] ∈ Θ.

Lemma 3.1.5. If Θ is maximally consistent and Θ ` A, then A ∈ Θ.

Proof. Let d ` ¬∆, A for some finite ∆ ⊆ Θ. It is enough to show that Θ, A
is consistent. If not, say d′ ` ¬∆′,¬A for some finite ∆′ ⊆ Θ, then CAdd

′ `
¬∆,¬∆′ contradicting the consistency of Θ.

Corollary 3.1.6. Let Θ be maximally consistent.

• If A[t/x] ∈ Θ, then ∃xA ∈ Θ.

• If A,B ∈ Θ, then A ∧B ∈ Θ.

• If A ∈ Θ, then A ∨B,B ∨A ∈ Θ.

Lemma 3.1.7. If Θ is maximally consistent and A a formula, then A ∈ Θ or
¬A ∈ Θ.

Proof. We have to show that at least one of Θ, A and Θ,¬A is consistent. If not,
we have proofs d′ ` ¬∆′,¬A and d ` ¬∆, A. But then CAdd

′ ` ¬∆,¬∆′.

8

Lemma 3.1.8. Let Θ be a maximally consistent set of L-formulae that shows
witnesses, and let A be an L-formula. Assume moreover, that for every L-term
t, we have A[t/x] ∈ Θ. Then ∀xA ∈ Θ.

Proof. By Lemma 3.1.7 it is enough to exclude the case that ∃x¬A ∈ Θ. Indeed,
if ∃x¬A ∈ Θ, then, as Θ shows witnesses, we have ¬A[t/x] ∈ Θ for some term t.
But since A[t/x] ∈ Θ by assumption, Θ is inconsistent (Proposition 2.1.17).

Lemma 3.1.9. Let Θ be a maximally consistent set of L-formulae that shows
witnesses. Then there is an L-structure M and an M-valuation ξ such that for
every L-formula A we have M, ξ |= A if and only if A ∈ Θ. Moreover, |M| is
the set of L-terms.

Proof. We define M as follows. Let |M| be the set of all L-terms and interpret
the function symbols canonically, i.e., we set fM(t1, . . . , t](f)) = ft1 . . . t](f). We

interpret relation symbols as given by Θ, i.e., we set RM = {(t1, . . . , t](R)) |
Rt1 . . . t](R) ∈ Θ}.

We define ξ as ξ(x) = x, i.e., ξ maps every variable to the term given by
that variable. By induction on t we show that tM,ξ = t.

By induction on the number of logical symbols of A we show that if M, ξ |= A
then A ∈ Θ. Indeed, the case of atomic formulae is given by the definition of
the RM and Lemma 3.1.7; the case of conjuction, disjunction, and existential
quantification is given by Corollary 3.1.6; and the case of universal quantification
is given by Lemma 3.1.8.

If, on the other hand, it is not the case that M, ξ |= A, then M, ξ |= ¬A
by Lemma 1.2.8. So, as just shown, ¬A ∈ Θ. Therefore, A 6∈ Θ by Proposi-
tion 2.1.17 as Θ is consistent.

Lemma 3.1.10. Let Θ be a consistent set of L-formulae. Then there is a set
Θ′ ⊇ Θ of L-formulae that is maximally consistent.

Proof. Consider the collection of consistent set Θ′ ⊇ Θ of L-formulae, ordered
by inclusion. Obviously, this collection contains Θ and hence is not empty.

Consider a totally ordered subcollection; we claim that its union is consistent
(and hence an upper bound in the collection). Indeed, if the union were inconsis-
tent, then there would be finitely many formulae witnessing that inconsistency
(Remark 3.1.2). But since the subcollection is totally ordered, there is a sin-
gle element containing all those formulae, hence that set would be inconsistent,
which it is not (as we only considered consistent sets).

By Zorn’s Lemma, the collection has a maximal element. That is a maxi-
mally consistent set above Θ.

Remark 3.1.11. The use of choice in Lemma 3.1.10 can be avoided if a well-
ordering on L is given (e.g., if L is finite). That well-ordering extends to a well
ordering on all L-formulae. So, by transfinite recursion, we can consider each
formula and add it, if the resulting set stays consistent (taking the union on
limit stages).

9

Lemma 3.1.12. Let c is an L-constant, i.e., c ∈ F (0)
L , that does not occur in

any element of Θ,∆. Moreover, assume Θ, A[c/x] ` ∆. Then Θ,∃xA ` ∆.

Proof. Assume d ` ¬Γ,¬A[c/x],∆ for some finite Γ ⊆ Θ. First, we show by
induction on derivations that replacing a constant by a new (for the whole
derivation) variable yields again a valid derivation. Applying this general ob-
servation to d, we obtain d′ ` ¬Γ,¬A[y/x],∆ where y is a fresh variable. Hence
∀x,y,Ad′ ` ¬Γ,∀x¬A,∆.

Lemma 3.1.13. If Θ is consistent, then so is Θ∪{A[cx,A/x] | ∃xA ∈ Θ} where
the cx,A are pairwise distinct constants not occurring in any element of Θ.

Proof. Assume d ` ¬Γ,¬A1[cx1,A1
/x1], . . . ,¬Ak[cxk,Ak/xk] for some finite Γ ⊆

Θ and ∃x1A1, . . . ,∃xkAk ∈ Θ. By induction on k, using Lemma 3.1.12, we
obtain d′ ` ¬Γ,¬(∃x1A1), . . . ,¬(∃xkAk) for some d′.

Remark 3.1.14. The set Θ∪{A[cx,A/x] | ∃xA ∈ Θ} constructed in Lemma 3.1.13
does not necessarily show witnesses, as one of the newly added A[cx,A/x] might
be an existential formula itself.

Lemma 3.1.15. Let Θ be a consistent set of L formulae. Then there exists
a first-order language L′ extending L and a maximally consistent set Θ′ ⊇ Θ
of L′-formulae that shows witnesses. Moreover, the cardinality of L′ does not
exceed the maximum of that of L and that of the natural numbers.

Proof. We set Θ0 = Θ and L0 = L. Then, by induction on n, take Θ′
n+1 ⊇

Θn a maximally consistent set of Ln formulae, let Ln+1 be Ln extended by
new constants cn+1

x,A for ∃xA ∈ Θ′
n+1, and set Θn+1 = Θ′

n+1 ∪ {A[cn+1
x,A /x] |

∃xA ∈ Θ′
n+1}. Finally let L′ be the union of all the Ln and set Θ′ =

⋃
n Θn.

Θ′ shows witnesses. Indeed, if ∃xA ∈ Θ′, then ∃xA ∈ Θn for some n. But
then A[cn+1

x,A /x] ∈ Θn+1 ⊆ Θ′.
Θ′ is consistent by the same argument as in the proof of Lemma 3.1.10.

We show that Θ′ is a maximally consistent set of L′-formulae. Let Θ̂ ⊇ Θ′ be
a consistent set of L′-formulae. We have to show Θ̂ = Θ′, i.e., Θ̂ ⊆ Θ′ (as
the other inclusion holds by assumption). So let A ∈ Θ̂. We have to show
A ∈ Θ′. Since A is an L′-formula, it is an Ln-formula for some n. But then
A,Θ′

n+1 ⊇ Θ′
n+1 is a set of Ln-formulae. Moreover, since A,Θ′

n+1 ⊆ A,Θ′ ⊆ Θ̂,
the set A,Θ′

n+1 is also consistent. Hence A ∈ Θ′
n+1 ⊆ Θ′.

Theorem 3.1.16. If Θ |= A, then Θ ` A.

Proof. Assume Θ |= A, but not Θ ` A. Then Θ,¬A is a consistent set of L-
formulae. By Lemma 3.1.15 there is language L′ extending L and a maximally
consistent set Θ′ ⊇ Θ,¬A that shows witnesses. Let M and ξ be the L′-structure
and valuation given by Lemma 3.1.9. Then M, ξ |= Θ. Moreover, M can also
be seen as an L-structure by only interpreting symbols of L; for L-formulae,
the notion of holding in the structure coincides (induction on the formula).
Hence, since Θ |= A, we have M, ξ |= A. But that implies A ∈ Θ′, which is a
contradiction since ¬A ∈ Θ′ and Θ′ is consistent (Proposition 2.1.17).

10

3.2 Further Conclusions

Lemma 3.2.1. A set Θ of L-formulae has a model if and only if it is consistent.

Proof. Assume Θ has a model, say M, ξ |= Θ. We have to show that Θ is not
inconsistent. So assume it were, say d ` ¬A1, . . . ,¬An for some A1, . . . , An ∈ Θ.
Then, by soundness (Theoem 2.2.5) there is an 1 ≤ i ≤ n such that M, ξ |= ¬Ai,
contradicting M, ξ |= Θ.

Assume, on the other hand, that Θ is consistent. We have to show that Θ
has a model. By Lemma 3.1.15 there is a first-order language L′ extending L
and a maximally consistent set Θ′ ⊇ Θ of L′-formulae that shows witnesses.
By Lemma 3.1.9 we obtain an L′-structure M and an M-valuation ξ such that
M, ξ |= Θ. Restricting the model to L, we obtain an L-model of Θ.

Theorem 3.2.2 (Compactness). A set of L-formulae has model, if and only if
every finite subset has a model.

Proof. Obviously, if the whole set has a model, then so has every subset. So
let’s assume that every finite subset has a model. We have to show that the
whole set has a model. By Lemma 3.2.1 it is enough to show that the set is
consistent. By Remark 3.1.2 it is enough to show that every finite subset is
consistent. But this is the case, as it has a model.

Theorem 3.2.3 (Löwenheim-Skolem). Let L be a first-order language. If a set
of L-formulae has a model, it also has one of size at most the maximum of that
of L and that of the natural numbers.

Proof. If a set Θ has a model, it is consistent. By Lemma 3.1.15 there is a first-
order language L′ extending L of the correct size and a maximally consistent
set Θ′ ⊇ Θ of L′-formulae showing witnesses. By Lemma 3.1.9 there is an L′-
model of the correct size. By restricting the signature, it can be seen as an
L-model.

Example 3.2.4. The language of set theory is finite (one relation symbol ∈, no
function symbols). So, if there is a model of set theory, there is also a countable
one.

Remark 3.2.5. Theorems 3.2.2 and 3.2.3 are purely model-theoretic state-
ments, i.e., the statement of the theorem does not at all refer to a notion of
proof.

11

