
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

Diplomarbeit

The Complexity of Resolution Refinements
and Satisfiability Algorithms

Nicolas Rachinsky

Aufgabensteller: Martin Hofmann
Betreuer: Jan Johannsen, Klaus Aehlig

2

Contents

Contents 3

Declaration 5

Abstract 7

Acknowledgments 8

1 Introduction and Preliminaries 9
1.1 Introduction . 9
1.2 Definitions and Preliminaries 10

1.2.1 Formulas . 10
1.2.2 Proof Systems . 11
1.2.3 Resolution . 12

1.2.3.1 Weakening 17
1.2.3.2 Tautological Clauses 19

1.2.4 DLL Algorithms . 19
1.2.5 Pebbling . 21

2 Lower Bounds for Resolution 23
2.1 Lower Bound for PHP . 23
2.2 Short Proofs are Narrow . 27

3 Simulations and Separations 31
3.1 tree <> ord . 32

3.1.1 ord 6≤ tree . 32
3.1.2 tree 6≤ ord . 35

3.2 neg <> reg . 40
3.2.1 neg 6≤ reg . 40
3.2.2 neg 6≥ reg . 46

3.3 reg < dag . 46
3.4 tree < dag . 46
3.5 tree < reg . 47
3.6 ord < reg . 47

3

3.7 reg ≤ rtrl . 47
3.8 tree < neg . 48
3.9 neg < sem . 49
3.10 ord <> sem . 51

3.10.1 ord 6≤ sem . 51
3.10.2 ord 6≥ sem . 59

3.11 reg <> sem . 59
3.12 sem < dag . 60
3.13 neg < dag . 60
3.14 neg <> ord . 60

3.14.1 neg 6≤ ord . 60
3.14.2 ord 6≤ neg . 60

4 Linear Resolution 61
4.1 lin ≥ tree . 61
4.2 Linear Resolution with Restarts 62
4.3 lin = dag? . 63

4.3.1 A Necessary and Sufficient Condition 63
4.3.2 Simulation on Special Formulas 64

4.4 lin 6≤ . 64

5 Lower Bounds for DLL 67
5.1 On Unsatisfiable Formulas . 67
5.2 On Satisfiable Formulas . 68

5.2.1 Drunken Heuristic . 68
5.2.2 Myopic Algorithms . 70

6 Conclusion 77
Open Questions . 77

Bibliography 79

Index 82

4

Declaration

I declare that this thesis was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text, and
that this work has not been submitted for any other degree or professional
qualification.

(Nicolas Rachinsky)

5

6

Abstract

Resolution is one of the most widely studied proof systems for the unsat-
isfiability of propositional formulas. In this work we compare the relative
strength of different refinements of resolution. We study tree-like, regular,
ordered, negative, semantic, and linear resolution as well as regular tree-like
resolution with lemmas. We summarize and prove all the known simula-
tions and separations between these. We present a new approach to study
the strength of linear resolution with respect to general resolution. Finally,
we show some lower bounds on the running time of DLL-algorithms which
are based on the connection between these algorithms and resolution.

7

8

Acknowledgments

I want to thank all the people who helped me finish this work with moral
support, by finding spelling and grammar errors, by checking the calcula-
tions, by explaining “obvious” steps to me,. . . . Since I will forget at least
one, I want to apologize to all I should have mentioned but have not.

I thank Brigitte Rath, Helmut Roschy, Hendrik Grallert, Jan Hoffmann, Jan
Johannsen, Klaus Aehlig, Martin Geier, Sebastian Queißer, Simon Stauber,
Steffen Hausmann, Stephan Packard, my parents,. . .

Chapter 1

Introduction and
Preliminaries

1.1 Introduction

Resolution is one of the most widely studied proof systems for the unsat-
isfiability of propositional formulas. Since it was introduced in the 1960’s
by Robinson [28], several refinements, restricted variants of resolution, were
developed. Resolution and these refinements are connected with (natural)
proof-search algorithms. In this work we will study tree-like, regular, or-
dered, negative, semantic, and linear resolution as well as regular tree-like
resolution with lemmas. For example, tree-like resolution is essentially the
same as the DLL algorithm, the basis for most complete SAT-solvers. Gen-
eral, regular and regular tree-like resolution with lemmas are connected with
certain extensions of DLL.

Although we know the relative strength of most of these, the proofs
are distributed over multiple papers which often refer to other papers for
important parts of the proofs. This work presents a mostly self-contained
overview of these relative strengths. It also includes proofs for the simula-
tions and separations. Some of these are new since they were not found in
the available literature, although the facts proven were mentioned. Some of
the proofs were simplified or corrected.

Chapter 1 gives an overview over this work and introduces the con-
cepts and notations used throughout this work. It also contains proofs for
some important or useful properties of the introduced concepts. The most
important concept introduced here is the proof system resolution and its
refinements.

Chapter 2 shows an exemplary lower bound for resolution and the well-
known connection between the width and size of resolution proofs.

Chapter 3, the main part of this work, contains proofs for all known
simulations of the resolution refinements studied in this work as well as

9

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

proofs for all known separations between them. Excepted are the results for
linear resolution. These are presented in Chapter 4, which is dedicated to
linear resolution. This chapter also contains a new approach to study the
strength of linear resolution with respect to general resolution.

Finally, Chapter 5 shows lower bounds for DLL algorithms: First on
unsatisfiable formulas by presenting and proving the well-known connection
between resolution and DLL. Second, two lower bounds for DLL on sat-
isfiable formulas are presented. These are proven by using lower bounds
for resolution (on unsatisfiable formulas which have to be refuted to find a
satisfying assignment).

1.2 Definitions and Preliminaries

In this work we will often use the following abbreviation.

[n] := {1, . . . , n} for n ∈ N

1.2.1 Formulas

All the formulas mentioned in this work are formulas of propositional logic.
A literal is either a (propositional) variable v (also v1) or a negated

variable ¬v (also v0 or v̄). The former is called a positive literal and the
latter a negative literal.

A clause is a disjunction a1 ∨ . . . ∨ ak of literals ai. We consider clauses
to be sets, i.e., the same literal cannot occur more than once in a clause
and clauses that only differ in the order of their literals are identified. The
number k of literals in a clause is called its width. A clause is (called)
tautological iff it contains a variable both in a positive and a negative literal.
A negative clause is a clause that contains only negative literals, and a
positive clause is a clause that contains only positive literals. A clause that
consists of only one literal is called unit clause.

A formula in CNF1 is a conjunction C1 ∧ . . . ∧ Cm of clauses Ci. The
width of a formula is the width of its widest clause. We consider formulas
to be sets, too. A pure literal is a variable that occurs only negatively or
only positively in a formula.

An assignment is a mapping from the variables to {0, 1}. A total assign-
ment assigns every variable (that does occur) to a value, a partial assignment
does not necessarily assign all variables to a value (so every assignment is a
partial assignment). Partial assignments are also called restrictions.

1conjunctive normal form

1.2. DEFINITIONS AND PRELIMINARIES 11

We will write F dα for the value of the formula F restricted by the as-
signment α. For a literal a = xε we define adα as

adα:=

1 if α(x) = ε
0 if α(x) = 1− ε
a otherwise.

For a clause C = a1 ∨ . . . ∨ ak, Cdα is defined as

Cdα:=

1 if any aidα= 1
0 if all aidα= 0∨

i∈I aidα with I := {i ∈ [k] | aidα 6∈ {0, 1}} otherwise.

Finally, F dα for a formula F = C1 ∧ . . . ∧ Cm is defined as

F dα:=

0 if any Cidα= 0
1 if all Cidα= 1∧

i∈I Cidα with I := {i ∈ [m] | Cidα 6∈ {0, 1}} otherwise.

For a total assignment, this always yields the value 0 or 1.
Any unsatisfiable formula must contain at least one negative and one

positive clause, otherwise setting all variables to true or false, respectively,
would satisfy all clauses.

SAT is the set of all formulas in CNF that are satisfiable. SAT (or
more exactly the connected decision problem) is the most well-known NP-
complete problem.

UNSAT is the language of all formulas in CNF that are not satisfiable.
Since SAT is NP-complete, UNSAT is co-NP-complete.

1.2.2 Proof Systems

Definition 1.1. A propositional proof system S is a polynomial-time com-
putable predicate S such that for all F ,

F ∈ UNSAT⇐⇒ ∃p.S(p, F).

Cook and Reckhow [14] defined a proof system as a polynomial-time
computable surjective mapping f : Σ∗ → UNSAT, where every string is
viewed as a potential proof and f maps a (potential) proof to the formula
it proves. This definition is equivalent to the one above: fS maps (F, p) to
F if S(p, F) is true and to some fixed unsatisfiable formula otherwise (e.g.,
x ∧ ¬x). In the other direction, Sf (p, F) is true iff f(p) = F .

Since we want to compare different proof systems, we introduce the
notion of simulation.

12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Definition 1.2. A proof system S′ simulates a proof system S iff for every
formula F ∈ UNSAT and every proof p of F in S there is a is a proof p′ of
F in S′ whose size is polynomial in |p|. We will write S ≤ S′ if S′ simulates
S.

Two proof systems are equivalent iff they simulate each other.

To show that one proof system S′ does not simulate another proof sys-
tem S (i.e., S 6≤ S′), we need at least one family ϕn n ∈ N of unsatisfiable
formulas such that the smallest proof in S′ is of size f(s(ϕn)) for every n
where s(ϕn) is the size of the smallest proof in S and f(.) is a function of
superpolynomial growth. In this case, we call S (superpolynomially) sepa-
rated from S′. We will write S > S′ if we have both S ≥ S′ and S 6≤ S′.
Note that this no total ordering, so we might have both S 6≤ S′ and S′ 6≤ S.
In this case, we will write S <> S′ to denote the incomparability of S and
S′.

The following observation by Cook and Reckhow [14] connects the com-
plexity of proof systems with the question whether NP = co-NP holds.

Observation 1.3. A proof system S such that there is, for some fixed k and
every formula F , a proof p with |p| < O(|F |k) implies UNSAT ∈ NP and,
since UNSAT is co-NP-complete, NP = co-NP. For many proof systems
formulas are known with exponential lower bounds on the proof size.

The other direction holds, too. If NP = co-NP, then UNSAT ∈ NP,
and the run of a nondeterministic Turing-machine that decides UNSAT
could be used as a proof.

1.2.3 Resolution

In the resolution proof system, a proof (or refutation2) is a resolution deriva-
tion of the empty clause 2 from the input formula F . A resolution derivation
of a clause C (from F) is a node labeled dag R. Each node in R has in-degree
0, 1 or 2. The nodes are labeled with clauses, and C is the label of a sink.
The label of each node with in-degree 0 must be a clause in F (we call these
clauses axioms), the label of a node with in-degree 1 must be identical to
the label of its predecessor, and the label of a node with in-degree 2 must be
derived from the labels of its predecessors according to the resolution rule:

C ∨ x D ∨ x̄

C ∨D

where x does not occur in C or D. In this case, we say that C ∨x is resolved
with D∨ x̄ on x, C∨D is the resolvent of C∨x and D∨ x̄, or x is eliminated.

2We use proof and refutation as synonyms.

1.2. DEFINITIONS AND PRELIMINARIES 13

The definition includes nodes with in-degree 1 to simplify some of the
proofs and to simplify the definition of regular tree-like resolution with lem-
mas (defined on page 14). Note that this defines resolution without weaken-
ing. Weakening is considered in Section 1.2.3.1. If not explicitly mentioned,
resolution means (in this work) resolution without the weakening rule.

We will write F ` C if C derivable with resolution from F . In a slight
abuse of notation we will identify clauses and the nodes they label. We may
assume that the derived clause C (most of the time 2) is the only sink,
since we can remove all clauses from which C is not reachable. The size of
a resolution derivation is the number of the clauses it contains, its width is
the width of its widest clause. We will write F `k C if there is a resolution
derivation of C from F with a width of at most k.

Theorem 1.4. Resolution is sound, i.e., if there is a resolution proof for a
formula F , then F is unsatisfiable.

Proof. Since any assignment satisfying C ∨ x and D ∨ x̄ must satisfy at
least one of C or D, it satisfies C ∨ D, too. Thus C ∨ D can be added to
the formula without changing its satisfiability. So a proof for a formula F
implies that its satisfiability does not change if the empty clause is added
to it, i.e., F is unsatisfiable. Therefore resolution is sound.

Sadly resolution cannot be used to prove P = NP by Observation 1.3 on
the facing page, because there are already exponential lower bounds known.
Some of these are presented in Chapter 2.

There are restricted versions of resolution (aka refinements). Without
any restrictions it is called general or dag-like resolution (dag) . The follow-
ing list contains the refinements considered in this work.

tree-like (tree) The dag is required to form a tree, i.e., every derived
clause is used at most once (if it is needed more often, it has to be de-
rived multiple times). This is also called DLL or DPLL (after D(P)LL
algorithm, introduced in Section 1.2.4).

regular (reg) Every variable is eliminated at most once on any path from
a source to the sink.

ordered (ord) There must be some linear ordering such that the variables
eliminated on each path are sorted according to this linear ordering.
This is also called DP or Davis-Putnam resolution.

negative (neg) One of the clauses used in each resolution step has to be a
negative clause. In the same way we define the dual refinement positive
resolution.

semantic (sem) There must be some assignment that falsifies one of the
clauses used in each resolution step.

14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

linear (lin) The dag is one chain, i.e., the result of an application of the
resolution rule is used in the next step. Linear proofs can be seen as
lists of clauses C1, . . . , Ck, where C1 ∈ F and Ci for i > 1 is the result
of resolving Ci−1 with some C where C ∈ F or C = Cj with j < i.

regular tree-like resolution with lemmas (rtrl) The dag must be one
tree, every path from a leaf to the root of the tree must obey the
regularity3 constraint, i.e., each variable is eliminated at most once on
the path.

There might be additional edges. These edges must lead to nodes with
in-degree 1, these edges are not part of the tree, and paths through
these need not obey the regularity constraint. But the starting node
C of such an edge must be to the left of the ending node D, i.e., C
must be in the left subtree of any tree rooted in a node on the path
between D and the sink. We call D a lemma.

In other words, the proof has to be a regular tree, but clauses derived
earlier may be used as additional axioms.

We assume that there is an annotation as to which of the edges are part
of the tree and which are not for regular tree-like refutation with lemmas.
And for semantic resolution we assume that one assignment satisfying the
constraint is given with the proof. We won’t write these explicitly to avoid
cluttering the notation.

Theorem 1.5. Resolution is complete, i.e., if a formula F is unsatisfiable,
then there is a resolution proof for F .

Proof. The completeness of resolution is shown by induction on the number
of variables. W.a.l.o.g. the formula does not contain pure literals, since
clauses containing these can be satisfied without any effect on the other
clauses (by setting the pure literals). Thus these clauses can be removed
and the formula is still unsatisfiable. We also assume that there are no
tautological clauses, since these can also be removed without changing the
satisfiability.

An unsatisfiable formula with no variables contains 2, and 2 is the
resolution proof. Given a formula F with n > 0 variables, select one variable
v, and partition the clauses in three sets, C1 containing clauses where v
occurs positively, C2 containing clauses where v occurs negatively, and C3

containing the other clauses. Now all clauses from C1 are resolved with all
clauses from C2 on v. The resulting clauses, with tautological ones omitted,
form the set C ′. The formula F ′ consisting of the clauses from C ′ and C3 has
at most n− 1 variables and is still unsatisfiable. The unsatisfiability follows

3One can also define this without the regularity constraint, but the resulting tree-like
resolution with lemmas is equivalent to general resolution (see Footnote 1 on page 47).

1.2. DEFINITIONS AND PRELIMINARIES 15

from the fact that any satisfying assignment α for F ′ can be extended to one
satisfying F . C3 is already satisfied by α. If both C1 and C2 are satisfied,
we are done. Assume α does not satisfy c1 ∈ C1. Since α satisfies all the
clauses resolved from c1 and the clauses in C2, α satisfies all the clauses in
C2. C1 is satisfied by adding v 7→ 1 to α.

The resulting resolution proof is ordered (on every path the variables are
eliminated in the order they were selected), and because of this the proof is
also regular. And thus it is also a regular resolution proof with lemmas. It
can be transformed into a tree-like proof, every clause and its derivation can
be duplicated for every use of the clause, resulting in a proof where every
clause is used at most once.

Now we prove the completeness of negative and semantic resolution.
Since every negative refutation is also a semantic refutation, it suffices to
prove that negative resolution is complete. This can be proven in the fol-
lowing way, which is due to Sam Buss [12]. We prove that an unsatisfiable
set F of clauses cannot be closed under negative resolution and not contain
the empty clause. From this the completeness follows directly, since there
is always a new clause derivable with negative resolution that can be added
unless there is already the empty clause in the set. And since there is only
a finite number of clauses with n variables, the empty clause is reached.

Assume F is unsatisfiable and closed under negative resolution. Let A be
the set of negative clauses in F , A is not empty since F is unsatisfiable. Now
we select a non-partial assignment α that satisfies all clauses in A and assigns
the minimal number of variables to the value false, this is possible since F
does not contain the empty clause. Now we take a clause C from F \A which
is falsified by α and which has the minimal number of positive literals. Such
a clause exists since F is unsatisfiable and α is a full assignment satisfying
all negative clauses. Let x be one of the positive literals in C. Note that
α(x) = 0 since C is falsified by α. Now we take a clause D ∈ A containing x
as the only variable set to false, i.e., the literal x̄ is the only satisfied literal
in the negative clause D. Such a clause exists by the choice of α. If all
clauses in A containing x̄ have another variable set to false, then x would be
assigned to true. And there is at least one clause in A that contains x̄ since
otherwise x would be assigned to true, too. Now consider the resolvent R
of C and D. R is falsified by α, therefore it cannot be contained in A, it
contains less positive literals than C, so it cannot be in F \A. Therefore it
must be a new clause, and this contradicts the assumption that F is closed
under negative resolution.

Completeness of linear resolution follows from Theorem 4.1 on page 61.

Observation 1.6. The above proof shows that there is an ordered refutation
of a formula F for any ordering of the variables. Since every variable occurs
at most once along this path, any path in this refutation has at most length
n, thus the whole refutation has at most size 2O(n).

16 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

The following result is often useful.

Theorem 1.7. If there is a resolution derivation R of C̃ of size s and width
w from an unsatisfiable formula F , then given a partial assignment α that
falsifies C̃, there is a resolution proof R′ for F dα=: F ′ of size at most s and
width at most w.

If R is regular, negative, semantic, tree-like or ordered, then so is R′.

Proof. Let R be the resolution derivation of C̃ from F of size s. We change
this into a proof R′ of F ′. First we replace all clauses C from F in R by the
clauses Cdα from F ′.

Let E be the resolvent of C ∨ p and D∨ p̄, which are replaced by C ′ and
D′. If C ′ contains p and D′ contains p̄, E is replaced by the resolvent of C ′

and D′ on p. Otherwise E is replaced by C ′ if C ′ does not contain p, or by
D′ if C ′ does contain p. We denote the replacement of E by E′.

In all cases, E′ does not contain p or p̄ and is a subset of E, and E′ does
not contain any variables that are assigned by α. Thus we get a resolution
derivation of C̃ ′ from F ′, where C̃ ′ is a subset of C̃ that does not contain
any variable set by α, thus it is the empty clause, and R′ is a refutation of
F ′.

Since we do not add clauses and possibly remove some if we remove parts
of the dag not leading to 2, |R′| ≤ s. Since we do not add literals to any
clause, R′ cannot be wider than R.

Since we just leave out applications of the resolution rule, we do not
change the order of the eliminations, thus an ordered proof is transformed
into an ordered one, and a regular one is transformed into a regular one. In
the resulting proof, both of the clauses used in a resolution step are subsets
of two clauses used in a resolution step of the original proof, thus a semantic
or negative proof is transformed into a semantic or negative one. Since we
do not add any new edges to the dag, a tree-like proof is transformed into a
tree-like proof.

This implies the following corollary.

Corollary 1.8. If there is a resolution proof R of size s and width w for
an unsatisfiable formula F , then given a partial assignment α there is a
resolution proof R′ for F dα=: F ′ of size at most s and width at most w.

If R is regular, negative, semantic, tree-like or ordered, then so is R′.

This proof does not work for linear resolution and regular tree-like reso-
lution with lemmas. It is still unknown if the above theorem and corollary
hold for these.

Theorem 1.9. If there is a tree-like resolution proof of size s for an un-
satisfiable formula F , there is a regular tree-like resolution proof of size at
most s for F .

1.2. DEFINITIONS AND PRELIMINARIES 17

Proof. An irregularity can be removed in the following way.
A non-regular proof does contain a step

C ∨ x D ∨ x̄

C ∨D

where x is eliminated again on the path C1 = C ∨D, . . . , Cl = 2. Let Cm

be the first clause containing x or x̄, w.a.l.o.g. it contains x.
Now the proof is changed in the following way. D∨ x̄, its derivation and

C1 are removed from the proof. The clauses C2, . . . , Cm−1 are replaced by a
clause C ′

i∨x where C ′
i ⊆ Ci. If C ′

i−1 does not contain the literal li eliminated
from Ci−1 and Di−1 in the step yielding Ci, we remove Di−1, its derivation
and Ci. Otherwise C ′

i is the result of resolving C ′
i−1 with Di−1. The clauses

Ck, . . . , Cm−1 are replaced by C ′
k, . . . , C

′
m−1 in the same way (but here C ′

i

does not contain x unless Ci contained one).
We repeat this until there are no more irregularities. Since there are at

least two clauses deleted in every step, the resulting proof is at most of the
size of the original one.

Note that this proof does not work for general resolution, since clauses
can be used multiple times and it might be necessary to duplicate such
clauses when they are modified. In Section 3.3 we will prove that the theorem
does not hold for general resolution.

1.2.3.1 Weakening

Sometimes the definition of resolution allows an additional rule, called weak-
ening rule.

C

C ∨ x

This rule is not needed for completeness, and resolution with this rule
is still correct, since every assignment satisfying C satisfies the weakened
clause C ∨ x as well, so the proof of Theorem 1.4 on page 13 still works.

The weakening rule does not change the size of the smallest proofs for
most refinements of resolution.

Theorem 1.10. If there is a resolution proof R of size s using the weakening
rule, then there is a resolution proof R′ of size at most s not using the
weakening rule. If R is regular, negative, semantic, tree-like or ordered,
then so is R′.

Proof. We prove this by transforming a resolution refutation that uses the
weakening rule into one that does not use it, without increasing its size.

First, we move every application of the weakening rule as far towards
the empty clause as possible (possibly duplicating the application of the

18 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

weakening rule if the variable added is used multiple times). After this step
every variable added by the weakening rule is removed by resolution in the
next step of the refutation.

Second, we remove all useless applications of the weakening rule, i.e.,
where the added literal was already present in the clause.

All remaining applications of the weakening rule are of the form

C

C ∨ l D ∨ l̄

C ∨D

We remove such an application of the weakening rule by leaving out both
of these steps and replacing C∨D by C. Now all clauses Ci derived (directly
and indirectly) from C ∨ D are replaced by C ′

i ⊆ Ci as necessary to keep
it a resolution refutation, in the same way as in the proof of Theorem 1.7
on page 16. We repeat the last step until there is no application of the
weakening rule left.

Since we added only uses of the weakening rule (in the first step) and
removed all of them later, the resulting proof is at most as big as the original
one. The refinements are preserved for the same reasons as in the proof of
Theorem 1.7.

This proof does not work for linear resolution and regular tree-like reso-
lution with lemmas. It is possible that these refinements are stronger with
weakening than without it.

Theorem 1.11. If there is a resolution refutation R of a formula F , then
there is a refutation R′ of F ′ where F ′ is a subset of F such that every clause
in F \F ′ is the superset of some clause in F ′. Furthermore the size of R′ is
at most |R|+ max(|F \ F ′|, |R|) · w(F) where w(F) is the width of F .

If R is regular, negative, semantic, tree-like or ordered, then so is R′.

Proof. Every removed clause can be derived with at most w(F) weakening
steps from a clause that is in F ′. We need to do this once for every use of a
removed clause as an axiom. There are at most max(|F \F ′|, |R|) such uses
of an axiom.

By Theorem 1.10 on the previous page we can leave out the weakening
steps without increasing the refutation any further. Therefore this proof
does not work for linear resolution and regular tree-like resolution with lem-
mas.

In the following chapters we will not use weakening where it can be
avoided without causing too much hassle.

1.2. DEFINITIONS AND PRELIMINARIES 19

1.2.3.2 Tautological Clauses

Tautological clauses in a formula have a similar effect as the weakening rule.
For general, regular, negative, semantic, tree-like and ordered resolution
they have no influence on the size of the smallest proof.

Theorem 1.12. If there is a resolution proof R for a formula F , then there
is a proof R′ for F ′ where F ′ is the subset of non-tautological clauses of F .
Furthermore R′ does not contain tautological clauses and |R′| ≤ O(|R|·w(R))
where w(R) is the width of R.

If R is regular, negative, semantic, tree-like or ordered, then so is R′.

Proof. We construct R′ from R by removing every occurrence of a tautologic
clause T in the following way. First we construct a proof that uses the
weakening rule.

If the only variable occurring twice in T = x ∨ x̄ ∨ T ′ is eliminated from
T and C as soon as T occurs in R, this is simulated by adding T ′ with the
weakening rule to C.

Otherwise, x and x̄ are removed later by resolving with C and C ′ yielding
D. Then C and C ′ can be resolved on x, and the missing literals from D
are added by the weakening rule.

Then we remove the weakening rule again with Theorem 1.10 on page 17.
This proves the theorem. Again this proof does not work for linear resolution
and regular tree-like resolution with lemmas.

1.2.4 DLL Algorithms

DLL algorithms (also called DPLL algorithms; named after Davis, Putnam,
Logemann, and Loveland; [16] and [15]) and variations are the algorithms
used most often to solve SAT problems.

The algorithm is called with a formula and a partial assignment. It
first checks whether the formula is satisfied by the assignment or is trivially
unsatisfiable, in these cases it returns the current assignment or UNSAT-
ISFIABLE, respectively. Otherwise a not yet set variable v and a truth
value ε is selected by a heuristic. The algorithm adds the setting v 7→ ε to
the assignment and calls itself recursively with the new assignment. If the
recursive call returns an assignment, this is returned. Otherwise the setting
v 7→ 1 − ε is added to the (original) assignment and the algorithm calls
itself with this assignment. If the recursive call returns an assignment, this
is returned. Otherwise UNSATISFIABLE is returned. Pseudocode for this
algorithm is shown in Figure 1.1 on the next page.

Since these algorithms are complete, i.e., they return a correct answer
SAT/UNSAT after a finite running time, a (log of a) run of a DLL algorithm
returning UNSAT is a proof for the unsatisfiability of the input formula.

There are many variations of the base algorithm. It is possible to simplify
the formula at the beginning of each call of DLL(). The most noteworthy

20 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

DLL(F, α)
if F dα = 1

return α
if F dα = 0

return UNSAT

(v, ε) := HEUR(F, α)
HEUR is the heuristic that selects
the variable v to be set next and the value ε
for v that should be tried first.
v is called decision variable.

σ := DLL(F, α ∪ {v 7→ ε})

if σ 6= UNSAT
return σ

else
return DLL(F, α ∪ {v 7→ ¬ε})

Figure 1.1: DLL Algorithm

simplification is unit propagation, i.e., setting variables occurring in unit
clauses to the one possible value as long as possible. Pseudocode is shown
in Figure 1.2 .

UP(F, α)
while F dα contains a unit

select a unit clause l (here l is a literal, i.e., l = v or l = v̄)
α = α ∪ {l 7→ 1}

Figure 1.2: Unit Propagation

The other two most prominent simplifications are pure literals, i.e., all
clauses that contain a pure literal can be removed, since we can set a pure
literal such that all these clauses are satisfied without affecting any other
clause, and subsumption, i.e., a clause D is removed if there is a clause C
with C ⊂ D, this is correct since any assignment satisfying C does also
satisfy D. Both of these are mostly of theoretical use, since they are quite
slow (for some practical/empirical definition of slow).

Another important improvement is called (clause) learning . This adds
new clauses that do not change satisfiability to the formula when the algo-
rithm has to backtrack.

1.2. DEFINITIONS AND PRELIMINARIES 21

An algorithm using learning may also do restarts, i.e., forget the current
partial assignment and start with an empty one. The learned clauses and
other information gathered are kept.

Restarts must be handled with care, since they might remove the com-
pleteness, i.e., there must be some guarantee that the algorithm cannot enter
an infinite loop. One easy way is to increase the number of steps before the
next restart can happen after every restart.

1.2.5 Pebbling

Let G = (V,E) be a directed acyclic graph (dag), and let S, T ⊂ V . While
the following definitions work for dags whose nodes have any (finite) in-
degree, we will only use them for graphs whose nodes have in-degree 0 and
2.

A pebbling (G, S, T) means to put pebbles on nodes of the graph accord-
ing to the following rules until there is a pebble on a node in T .

1. A pebble may be put on any node in S.

2. A pebble may be removed from any node at any time.

3. A pebble may be put on a node v when there are pebbles on all direct
predecessors of v.

More formally, a pebbling (G, S, T) is a sequence C0, C1, . . . , Ck of sets
Ci ⊆ V , with C0 = ∅ and Ck ∩ T 6= ∅. And for all 0 ≤ i < k, one of the
following properties holds:

1. Ci+1 = Ci ∪ {u} with u ∈ S

2. Ci+1 ⊂ Ci

3. Ci+1 = Ci ∪ {u} if all direct predecessors of u are in Ci

Here each Ci is the set of nodes with a pebble after the i-th step.
The complexity of a pebbling is the number of pebbles needed, i.e.,

maxi≤k(|Ci|). The pebbling number Peb(G, S, T) of (G, S, T) is the minimal
complexity of the pebblings from S to T . The pebbling number Peb(G) of
a dag G is Peb(G, S, T) with S the set of the sources in G and T the set of
the sinks in G.

Lemma 1.13. For G, S, T as above and v ∈ V the following holds

Peb(G, S, T) ≤ max(Peb(G, S, T ∪ {v}),Peb(G, S ∪ {v}, T) + 1).

Proof. First we can pebble G from S to T ∪ {v} using Peb(G, S, T ∪ {v})
pebbles. If this ends with a pebble on a node in T we’re done. Otherwise we
remove all pebbles except the one on v. Now we can use this one to continue
with a pebbling from S ∪ {v} to T , but we never remove the pebble on v.
Thus this needs at most Peb(G, S ∪ {v}, T) + 1 pebbles.

22 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

There are graphs with large pebbling numbers.

Theorem 1.14 (Celoni et al. [26]). There are graphs Gn with n vertices
such that

Peb(Gn) ≥ Ω(n/ log n),

for large n.

Chapter 2

Lower Bounds for Resolution

In this chapter we show an exemplary lower bound for resolution and the
well known connection between the width and size of tree-like and general
resolution proofs.

2.1 Lower Bound for PHP

The first lower bound we will show is an exponential lower bound for resolu-
tion refutations of PHPn+1

n (or more exactly, we will show the lower bound
for PHPn

n−1, since the terms are simpler in this case). PHPm
n (with m > n)

is an unsatisfiable set of clauses stating the negation of the PigeonHole Prin-
ciple. The latter states that there cannot be an 1 − 1 mapping from a set
of cardinality m into a set of cardinality n with m > n. This was first
proven by Haken [20]. The presented (simpler) proof is due to Beame and
Pitassi [5].

PHPm
n uses the variables pi,j with the intended meaning of putting pigeon

i into hole j. Then PHPm
n consists of the following clauses:

• the pigeon clauses, stating that every pigeon is put into a hole:

Pi =
∨

j∈[n]

pi,j for every i ∈ [m]

• the hole clauses, stating that at most one pigeon is put into a hole:

Hi,j,k = p̄i,k ∨ p̄j,k for every i < j ∈ [m] and k ∈ [n]

Theorem 2.1. If P is a resolution refutation of PHPn
n−1, then |P | ≥ 2n/20.

To prove this, we first introduce (or recall) some definitions. A matching
ρ from [m] into [n] is a set of pairs

{(i1, j1), . . . , (ik, jk)} ⊂ [m]× [n]

23

24 CHAPTER 2. LOWER BOUNDS FOR RESOLUTION

such that all the iν as well as all the jν are pairwise distinct. The size of ρ
is |ρ| = k.

A matching induces a partial assignment of the variables of PHP:

ρ(pi,j) =

1 if (i, j) ∈ ρ
0 if there is (i, j′) ∈ ρ with j′ 6= j

or (i′, j) ∈ ρ with i′ 6= i
undefined otherwise

We identify a matching with the partial assignment it induces.
There is also a total truth assignment αρ induced by a matching where

every unset variable is set to zero, i.e.,

αρ(pi,j) =
{

1 if (i, j) ∈ ρ
0 otherwise

Note that since a matching puts |ρ| pigeons into distinct holes, αρ satisfies
|ρ| pigeon clauses and all the hole clauses.

A truth assignment αρ given by a maximal matching (i.e., |ρ| = n) is
called critical assignment .

Definition 2.2. For I ⊆ [m] and J ⊆ [n] we define the following abbrevia-
tion (stating one of the pigeons in I is put into one of the holes in J).

PI,J :=
∨
i∈I

∨
j∈J

pi,j

Using this notation the pigeon clause Pi is P{i},[n].
For the proof, we use the monotone calculus, which was introduced by

Buss and Pitassi [13]. The monotone calculus is a proof system where a
proof is a list of positive (also called monotone) clauses, where, similar to
resolution proofs, clauses must either be taken from the set of clauses to
refute or derived via the only rule from clauses occurring earlier in the list,
where the list must end in the empty clause. It was specifically designed to
refute PHP clauses. The rule is

C ∨ PI0,{j} D ∨ PI1,{j}

C ∨D

with I0, I1 ⊂ [m] and I0 ∩ I1 = ∅.
It is easy to see that every assignment αρ for a matching ρ that satisfies

C∨PI0,{j} and D∨PI1,{j} satisfies C∨D, thus the monotone calculus is sound
in respect to such assignments. Furthermore it is equivalent to resolution
on PHP formulas.

Lemma 2.3. If there is a monotone refutation of the pigeon clauses of
PHPm

n of size s, then there is a resolution refutation of size at most s ·m2.

2.1. LOWER BOUND FOR PHP 25

Proof. Every step in the monotone proof can be simulated by m2 resolution
inferences.

C ∨ PI0,{j} D ∨ PI1,{j}

C ∨D

D∨ p̄i,j can be derived from D∨PI1,{j} for every i ∈ I0 within |I1| steps,
by using the hole clauses p̄i,j ∨ p̄i′,j with i′ ∈ I1.

Resolving these |I0| clauses with C ∨ PI0,{j} results in a derivation of
C ∨D, using |I0| · (|I1|+ 1) steps.

|I0| · (|I1|+ 1) ≤ m

2
(
m

2
+ 1) =

m2

4
+

m

2
≤ m2

The above lemma is not needed to prove the lower bound for PHP, it is
included here for completeness only.

Lemma 2.4. If there is a resolution refutation R of PHPm
n of size s, then

there is a monotone refutation R′ of the pigeon clauses of size at most s.

Proof. We define C+ and C− to be the set of positive and negative literals
of a clause C. Now we define a positive clause Cm for every clause C that
is equivalent with C under critical assignments, i.e., Cdαρ= Cmdαρ for ρ a
matching with |ρ| = n.

Cm :=
∨

xi,j∈C+

xi,j ∨
∨

xi,j∈C−

P[m]\{i},{j}

We now construct R′ from R by replacing every clause C by another
clause C ′ or removing it. Thus R′ is at most of the size of R. We maintain
C ′ ⊆ Cm for every clause in R′, so R′ will again end with the empty clause.

If C is a pigeon axiom Pl, then C ′ := C = Pl. If C is a hole axiom Hl,j,k,
then it is removed.

If C = D̃0 ∨ D̃1 is the resolvent of D0 = D̃0 ∨ pi,j and D1 = D̃1 ∨ p̄i,j ,
then C ′ is either D′

0, D′
1 or it is derived by one monotone step from D′

0 and
D′

1, thus R′ is a monotone proof. Note that D0 cannot be a hole clause and
is therefore replaced by some clause D′

0.

• If pi,j 6∈ D′
0, we set C ′ := D′

0 ⊆ Cm.

• Otherwise if D1 is a hole clause Hi,k,j , then pi,j ∈ D̃m
1 = P[m]\{k},{j}

and we set C ′ := D′
0 ⊆ D̃m

0 ∨ D̃m
1 = Cm.

• Otherwise D1 is replaced by a clause D′
1 ⊆ Dm

1 = D̃m
1 ∨ P[m]\{i},{j}.

– If pi,j ∈ D′
1, then pi,j ∈ D̃m

1 . We set C ′ := D′
0 ⊆ D̃m

0 ∨ D̃m
1 = Cm

in this case.

26 CHAPTER 2. LOWER BOUNDS FOR RESOLUTION

– Otherwise if pi′,j 6∈ D′
1 for every i′ 6= i, then D′

1 ⊆ D̃m
0 ⊆ Cm,

and we set C ′ := D̃′
1.

– Otherwise D′
1 = D̃′

1 ∨ PI,{j} for some D̃′
1 and I with D̃′

1 ⊆ D̃m
1

and i 6∈ I. We set C ′ := D̃′
0 ∨ D̃′

1 ⊆ D̃m
0 ∨ D̃m

1 = Cm. Note
that the same C ′ is obtained from D0 and D1 via the monotone
rule.

Because of the above lemma, it is enough to prove a lower bound for the
monotone calculus to prove one for resolution. We will now show that every
short monotone proof for PHP can be converted to one that contains only
short clauses.

Lemma 2.5. If R is a monotone refutation of PHPn
n−1 of size |R| < 2n/20,

there is a matching ρ with |ρ| ≤ 0.329n such that Rdρ does not contain any
clause C with at least n2/10 variables.

Proof. We will call a clause C wide if it contains more than n2/10 variables.
Note that every wide clause contains at least 1

10 of all variables. Thus the
probability of a randomly chosen variable to occur in some fixed wide clause
is therefore at least 1/10. Thus there is a variable that occurs in at least
1/10 of the wide clauses. We now construct a matching inductively using
the following greedy algorithm.

ρ0 := ∅
ρk+1 := ρk ∪ {(i, j)} with pi,j one of the variables occurring

most often in wide clauses in Rdρk

Let s be the number of wide clauses in R and sk the number of wide
clauses in Rdρk

. Then s = s0 and sk+1 ≤ 9
10sk. Therefore sr = 0 for

r := dlog10/9 se. We define ρ := ρr.

|ρ| = r = dlog10/9 se ≤ log10/9(2
n/20) = ((log10/92)/20)n < 0.329n

That and the fact that Rdρr does not contain any wide clause prove the
lemma.

Now we prove that every monotone proof of PHP must contain at least
one wide clause.

Lemma 2.6. If R is a monotone refutation of PHPn
n−1, then there is a

clause C in R containing at least 2n2/9 variables.

Proof. We first define for F a subset1 of PHPn
n−1 and C a positive clause

F |=cr C iff every critical assignment satisfying F does satisfy C.
1We are only interested in pigeon clauses here, but hole clauses in F do not matter

since every critical assignment satisfies all hole clauses.

2.2. SHORT PROOFS ARE NARROW 27

Then we define the following measure on positive clauses.

µ(C) := min{|F | | F ⊆ PHPn
n−1 and F |=cr C}

We have µ(Pi) = 1 and µ(2) = n. For clauses C1, C2, C3 with C1, C2 |=cr C3

we have µ(C3) ≤ µ(C1) + µ(C2). Thus there must be a clause C in R with
n
3 < µ(C) ≤ 2 · n

3 .
Take F ⊂ PHPn

n−1 minimal with F |=cr C, i.e., n
3 < |F | ≤ 2 · n

3 . We
will now show that the clause C contains at least |F | · (n − |F |) variables.
|F | · (n− |F |) ≥ 2n2/9 since the function x 7→ x(n− x) has its minimum in
the interval n

3 < x ≤ 2 · n
3 at the endpoints where the value is 2n2/9.

Now let 1 ≤ i ≤ n with Pi ∈ F and let αρ be a critical assignment with
αρ 6|= Pi and αρ 6|= C. Such an αρ does exist since F is minimal. Note that Pi

is the only pigeon clause not satisfied by αρ. Now let 1 ≤ j ≤ n with Pj 6∈ F
and let kj with (j, kj) ∈ ρ. Now we define ρj := (ρ \ {(j, kj)}) ∪ {(i, kj)}.
Note that αρj is still a critical assignment since ρj is still a matching and
|ρ| = |ρj |, because of αρ 6|= Pi. Thus αρj |= F and since F |=cr C, we also
get αρj |= C. Since pi,kj

is the only variable set to 1 by αρj but not αρ and
C is a positive clause, C must contain pi,kj

.
This holds for every combination of Pi ∈ F and Pj 6∈ F , thus C must

contain at least |F | · (n− |F |) ≥ 2n2/9 variables.

Proof (of Theorem 2.1). Let R be a monotone refutation of PHPn
n−1 with

|R| < 2n/20. By Lemma 2.5 on the preceding page there is a matching ρ
with |ρ| < 0.329n and Rdρ does not not contain any clause with at least
n2/10 variables.

But Rdρ is a monotone proof for PHPn′
n′−1 (after renaming the variables)

with n′ ≥ 0.671n. Thus by Lemma 2.6 on the facing page R must contain
a clause of length 2(0.671n)2/9 > 0.9n2/9 = n2/10 variables. This is a
contradiction to the above upper bound on the clause length. Thus |R| ≥
2n/20.

2.2 Short Proofs are Narrow

There is a a connection between the length and the width of resolution
proofs. This was proven by Ben-Sasson and Widgerson [7].

In this section we will use w(X) to denote the width of X, where X
might be a clause, a resolution derivation or a set of clauses. In the latter
cases it denotes the maximal width of a clause occurring in X. We will use
w(F ` C) to denote the width of the smallest width derivation of C from
F . Here we will use the previously defined notation F `l C to state there is
a derivation of C from F with width l.

28 CHAPTER 2. LOWER BOUNDS FOR RESOLUTION

Lemma 2.7. For ε ∈ {0, 1} and an unsatisfiable formula F , if F dx:=ε`k C,
then F `k C or F `k+1 C ∨ x1−ε.

Proof. Let R be the derivation of C from F dx:=ε with width at most k. Let
F ′ be the set of those clauses in F that contain x1−ε.

We now construct R′ by adding x1−ε to all clauses in R that come from
F ′dx:=ε and all clauses derived from these (directly and indirectly).

If R does not use any clause from F ′dx:=ε, R = R′ and R′ is a derivation
of C from F .

Otherwise R′ is a resolution derivation of C ∨ x1−ε from F , since x1−ε

is not removed in R and C is derived (indirectly) from a clause containing
x1−ε. The width of the new derivation is at most k + 1 since one literal is
added to some of the clauses.

Lemma 2.8. If F dx:=ε`k−1 2 and F dx:=1−ε`k 2 hold, then F `l 2 with
l = max(k, w(F)).

Proof. Let R be a resolution derivation of 2 from F dx:=1−ε with width at
most k. Let Fxε be the set of all clauses of F not containing xε.

By Lemma 2.7 we can derive 2 or x1−ε from F with width k. In the
first case we are done. In the second case, we resolve x1−ε with all clauses
in F that contain xε. This has width w(F). R is a derivation of 2 from
these clauses and Fxε of width k.

Theorem 2.9.
w(F ` 2) ≤ w(F) + log st(F)

where st(F) is the size of the smallest tree-like resolution refutation of F .

Proof. We prove by induction on (b, n) that st(F) ≤ 2b implies w(F ` 2) ≤
w(F) + b. If b = 0, then 2 ∈ F and we are done.

Otherwise the proof ends with

x x̄

2

Now let Rx be the derivation of x from F and let Rx̄ be the derivation
of x̄ with sizes Sx and Sx̄. We know Sx +Sx̄ +1 ≤ 2b. W.a.l.o.g. Sx ≤ 2b−1.

Rxdx:=0 is a derivation of 2 from F dx:=0 and Rx̄dx:=1 is a derivation of
2 from F dx:=1.

By induction on b we know that w(F dx:=0` 2) ≤ w(F) + b − 1 and by
induction on n we know that w(F dx:=1` 2) ≤ w(F) + b. With Lemma 2.8
we get w(F ` 2) ≤ w(F) + b.

Corollary 2.10. The size of a tree-like resolution refutation of a formula
F is at least 2(w(F`2)−w(F)).

2.2. SHORT PROOFS ARE NARROW 29

Theorem 2.11.

w(F ` 2) ≤ w(F) + O

(√
n ln sg(F)

)
where sg(F) is the size of the smallest (general) resolution refutation of F .

Proof. If sg(F) = 1 we are done. Otherwise let R be a refutation of size
sg(F).

Now set d :=
⌈√

2n ln sg(F)
⌉

and a := (1−(d/2n))−1. Let R∗ denote the
set of wide clauses in R, where wide means a width greater than d. We now
prove by induction on (b, n) that |R∗| < ab implies w(F ` 2) ≤ d+w(F)+b.

If b = 0, then there is no wide clause in R, and hence w(F ` 2) ≤
d + w(F) + b is true.

Otherwise one of the 2n literals (w.a.l.o.g. x) appears in at least d|R∗|
2n =

d
2n |R

∗| of the clauses in R∗. Therefore there are at most (1− d
2n)|R∗| < ab−1

wide clauses in Rdx:=1. By induction on b we have w(F dx:=1` 2) ≤ d +
w(F)+ b− 1, and by induction on n we have w(F dx:=0` 2) ≤ d+w(F)+ b.
With Lemma 2.8 on the preceding page we get w(F ` 2) ≤ d + w(F) + b.

This proves the theorem, since for b′ := dln sg(F)/ ln ae we have |R∗| <
sg(F) ≤ ab′ and d + b′ = O

(√
n ln sg(F)

)
.

Corollary 2.12.

sg(F) = exp

(
Ω ((F ` 2)− w(F))2

n

)

where sg(F) is the size of the smallest (general) resolution refutation of F .

The connection between width and size of a proof can be (and is) used to
prove lower bounds. In the same work that presented the above connection
Ben-Sasson and Widgerson [7] gave new proofs for most lower bounds for
general and tree-like resolution known at that time.

30 CHAPTER 2. LOWER BOUNDS FOR RESOLUTION

Chapter 3

Simulations and Separations

In this chapter we will study the relative complexity of the different res-
olution refinements and give proofs for the known results. The proofs for
linear resolution appear in Chapter 4. The following table and Figure 3.1
summarize the simulations and separations currently known.

dag rtrl reg ord tree lin sem

neg < 6≥ <> <> > 6≥ <

sem < 6≥ <> <> > 6≥
lin ≤ ? 6≤ 6≤ >

tree < < < <>

ord < < <

reg < ≤
rtrl ≤

tree

reg

linrtrl >

≥

6≤

ord

sem

dag

neg

Figure 3.1: Relative Strengths of the Refinements

31

32 CHAPTER 3. SIMULATIONS AND SEPARATIONS

It is still unknown if linear resolution simulates regular, ordered, seman-
tic or negative resolution. It is unknown if linear resolution simulates regular
tree-like resolution with lemmas. It is also unknown if regular tree-like res-
olution with lemmas simulates linear, semantic, or negative resolution. It is
open if there is a separation between general resolution and linear resolution,
one between general resolution and regular tree-like resolution with lemmas,
or one between regular resolution and regular tree-like resolution with lem-
mas. At least one of the two latter separations (dag > rtrl or rtrl > reg)
must exist, since there is a separation between general and regular resolu-
tion.

That rtrl ≤ dag and that lin ≤ dag follows directly from the defini-
tions. That tree < sem, ord < dag, tree < rtrl, and ord < rtrl, follows by
transitivity: tree < neg < sem, ord < reg < dag, tree < reg ≤ rtrl, and
ord < reg ≤ rtrl, resp.

That semantic (and negative) resolution does not simulate regular tree-
like resolution with lemmas follows also from transitivity. That neg ≥ rtrl
would imply that neg ≥ reg (because of rtrl ≥ reg), which is a contradiction
to the incomparability of regular and negative resolution. That sem ≥ rtrl
would imply the same contradiction.

3.1 Tree-like and Ordered Resolution

In this section we prove the incomparability of tree-like and ordered resolu-
tion (tree <> ord). This is implied by Corollary 3.7 on page 35 (ord 6≤ tree)
and Corollary 3.14 on page 40 (tree 6≤ ord).

3.1.1 Ordered Resolution is Separated from
Tree-like Resolution

We first show the separation ord 6≤ tree, following a proof presented by
Ben-Sasson et al. [6].

We construct a formula (called pebbling formula or short PG) from a
dag G = (V,E) with in-degree 2 as follows. For every v ∈ V , there are two
variables x0(v) and x1(v). Now PG consists of the following clauses:

• a source axiom x0(v) ∨ x1(v) for every source v

• two sink axioms x̄0(v) and x̄1(v) for every sink v

• four pebbling axioms

xa(u1) ∧ xb(u2)→ x0(v) ∨ x1(v)

with a, b ∈ {0, 1} for every non-source node v with the predecessors u1

and u2

3.1. TREE <> ORD 33

It is easily seen that this formula is unsatisfiable. PG has n := 2|V |
variables and m := O(|V |) clauses.

Lemma 3.1. There is an ordered resolution proof R for PG with |R| = O(n).

Proof. We first fix some topological ordering u1, . . . , un of G. Now following
this ordering we derive x0(ui) ∨ x1(ui) =: C for every ui. For a source ui

we already have this in the formula. For any other node we already have
derived this clause for each of its predecessors (v1 and v2), since they appear
earlier in the topological ordering, so we can derive it with a fixed number
of steps. Note that we can do this and obey an order compatible with the
topological ordering on the ui.

x0(v1) ∨ x1(v1) x̄0(v1) ∨ x̄1(v2) ∨ C
x0(v1)

x1(v1) ∨ x̄1(v2) ∨ C x̄1(v1) ∨ x̄1(v2) ∨ C
x1(v1)

x̄1(v2) ∨ C

x0(v1) ∨ x1(v1) x̄0(v1) ∨ x̄0(v2) ∨ C
x0(v1)

x1(v1) ∨ x̄0(v2) ∨ C x̄1(v1) ∨ x̄0(v2) ∨ C
x1(v1)

x̄0(v2) ∨ C

x0(v2) ∨ x1(v2) x̄1(v2) ∨ C
x1(v2)

x0(v2) ∨ C x̄0(v2) ∨ C
x0(v2)

C

Resolving x0(un) ∨ x1(un) with x̄0(un) and x̄1(un) yields the empty
clause. This proves the lemma.

We now prove a lower bound for tree-like resolution refutation on these
graphs. We use a game introduced by Pudlák and Impagliazzo [27] to achieve
this.

The game is played between two players, delayer and prover , on a for-
mula F . In each round the prover chooses an unassigned variable. Then the
delayer chooses the value 0 or 1 for the variable or ∗. In the latter case the
delayer scores one point and the prover chooses the value. The game ends
as soon as the assignment falsifies all literals in a clause of F .

Theorem 3.2. If there is a tree-like refutation of size s of F , then there is
a strategy for the prover that prevents the delayer from scoring more than
dlog se points.

Proof. The prover can keep the following invariant: If the delayer has scored
t points, the current assignment falsifies one clause C in the refutation and

34 CHAPTER 3. SIMULATIONS AND SEPARATIONS

the part of the refutation rooted in this clause has at most size s/2t. This
is obviously true in the beginning.

Now the prover selects the variable v that was eliminated to derive C. If
the delayer chooses 1 or 0, one of the clauses C was derived from is falsified,
thus the subtree gets smaller (but the delayer does not score any points),
and we use this clause as C in the next step. If the delayer chooses ∗, the
prover chooses the value of v such that the smaller subtree is rooted in the
newly falsified clause. This has at most half of the size of the current tree,
thus its size is at most s/2t+1 and the invariant still holds.

After the delayer has scored dlog se points, there is a clause with a subtree
of size 1, thus it occurs in F and the game ends.

Corollary 3.3. If there is a strategy for the delayer that guarantees him r
points, then a tree-like refutation of F must have at least size 2r.

Now we use this to prove a lower bound for tree-like refutations of PG

(still following the proof by Ben-Sasson et al. [6]).

Lemma 3.4. The delayer can score Ω(Peb(G)) points on a formula PG.

The delayer can use the following strategy to achieve this. First he sets
T ′ := T and S′ := S where T and S are the sets of the sinks and sources in
G.

Now in each round the prover selects a variable xi(v). The delayer now
proceeds as follows.

• If v ∈ T ′, he responds 0.

• If v ∈ S′, he responds 1.

• If v 6∈ S′ ∪ T ′ and Peb(G, S′, T ′ ∪ {v}) = Peb(G, S′, T ′), he responds 0
and adds v to T ′.

• If v 6∈ S′ ∪ T ′ and Peb(G, S′, T ′ ∪ {v}) < Peb(G, S′, T ′), he responds ∗
and adds v to S′.

We now prove two facts about games where the delayer follows the above
strategy.

Lemma 3.5. After the game Peb(G, S′, T ′) ≤ 3.

Proof. First note that, if xi(v) is set to 1, v is in S′ afterwards, and if both
x0(v) and x1(v) are set to 0, then v must be in T ′ afterwards (if the first set
one is set via the last case, then v is added to S′ and the second one is set
to 1).

Since all s ∈ S are set to 1, no source axiom is violated. Since all t ∈ T
are set to 0, no sink axiom is violated. Thus one of the pebbling axioms
must be violated. Suppose it is one of those associated with that node v

3.1. TREE <> ORD 35

which has the predecessors u1 and u2. To falsify this, both x0(v) and x1(v)
must be set to 0, thus v ∈ T ′. At least one of xi(u1) must be set to 1, thus
u1 ∈ S′ (and analogously u2 ∈ S′). Now we can pebble from S′ to T ′ by
putting a pebble on u1 and u2, and then on v, with three pebbles.

Lemma 3.6. Peb(G, S′, T ′) ≥ Peb(G, S, T) − p after each round if the de-
layer has scored p points after this round.

Proof. Before the first round we have Peb(G, S′, T ′) = Peb(G, S, T).
Peb(G, S′, T ′) only changes in the last case of the above description of

the strategy. Since Peb(G, S′, T ′ ∪ {v}) < Peb(G, S′, T ′) at the beginning
of the round and by Lemma 1.13 on page 21 we get Peb(G, S′, T ′) − 1 ≤
Peb(G, S′ ∪ {v}, T ′). Note that in this case v is added to S′ and the delayer
scores one point, thus the invariant is preserved.

Proof (of Lemma 3.4). By the above two lemmas we have

3 ≥ Peb(G, S′, T ′) ≥ Peb(G, S, T)− p

after the game ends, thus since p is the total number of points scored by the
delayer, the delayer scored at least Peb(G, S, T)− 3 points.

Now we consider a graph G with a high pebbling number (Theorem 1.14
on page 22), i.e., Peb(G) ≥ Ω(n/ log n). Then from Lemma 3.1 on page 33
and Lemma 3.4 on the facing page together with Corollary 3.3 on the pre-
ceding page, the following corollary follows immediately.

Corollary 3.7. Tree-like resolution is (exponentially) separated from or-
dered resolution, i.e., ord 6≤ tree.

3.1.2 Tree-like Resolution is Separated from
Ordered Resolution

Now we show the other direction, i.e., tree 6≤ ord, following a proof by
Johannsen et al. ([23] and [8]).

Here we use the string of pearls principle, or more exactly a formula
SP′

n,m that contradicts this principle. The string of pearls principle says
that if from a bag of m pearls that are colored red and blue, n are put on
a string and the first one is red and the last one blue, then there must be a
red one next to a blue one. The formula SPn,m has the variables pi,j and rj

with i ∈ [n] and j ∈ [m], where pi,j means that pearl j is at position i on
the string and rj means that pearl j is colored red. Now SPn,m consists of
the following clauses.

36 CHAPTER 3. SIMULATIONS AND SEPARATIONS

m∨
j=1

pi,j i ∈ [n] (3.1)

p̄i,j ∨ p̄i,k i ∈ [n], j, k,∈ [m], j 6= k (3.2)
p1,j → rj j ∈ [m] (3.3)
pn,j → r̄j j ∈ [m] (3.4)

pi,j ∧ rj ∧ pi+1,k → rk 1 ≤ i < n, j, k ∈ [m], j 6= k (3.5)

Clauses (3.1) and (3.2) guarantee that a pearl is on each place of the
string and that there is only one. Clauses (3.3) force the first pearl to be
red, and clauses (3.4) force the last one to be blue. And finally clauses (3.5)
say that each red pearl is followed by a red one. Note that we do not require
each pearl to occur at most once. This is a difference to the work by Bonet
et al. [8], their proof does not work with these clauses. Without these clauses
their proof does work. The proof of the upper bound does not need these
clauses.

We now prove an upper bound for tree-like refutations of these formulas.

Lemma 3.8. There are tree-like refutations of SPn,m of size mO(log n).

Proof. For i < h < i′ ∈ [n] and j, j′ ∈ [m] we can derive

pi,j ∧ rj ∧ pi′,j′ → rj′

with tree-like resolution in size O(m) from the above clauses and the 2m
clauses

pi,j ∧ rj ∧ ph,k → rk and ph,k ∧ rk ∧ pi′,j′ → rj′ for k ∈ [m].

We do this by resolving the clauses of each pair with each other eliminating
rk, the resulting m clauses are then resolved with

∨m
l=1 ph,l.

We can use this to derive p1,j ∧ rj ∧ pn,j′ → rj′ for j, j′ ∈ [m] in
O(mO(log n)) steps. This is done in the following way. To obtain the clause
p1,j ∧ rj ∧ pn,j′ → rj′ we build a 2m-ary tree of clauses, in which each clause
pi,j ∧ rj ∧ pi′,j′ → rj′ is obtained from 2m clauses

pi,j ∧ rj ∧ pl
i+i′

2

m
,k
→ rk and pl

i+i′
2

m
,k
∧ rk ∧ pi′,j′ → rj′ for k ∈ [m]

as above. At the leaves the axioms (3.5) are used. This tree has depth
dlog2m ne, thus it has at most (2m)dlog2m ne+1 nodes. Each node corresponds
to a resolution derivation of size O(m). Since there are m2 of these trees,
the derivation of these clauses has size mO(log n).

These m2 clauses can be refuted in the following way. We resolve them
with the axiom p1,j → rj to get the clauses p1,j ∧ pn,j′ → rj′ in one step for

3.1. TREE <> ORD 37

each of the clauses. These clauses are resolved with
∨m

j=1 p1,j , yielding m
clauses pn,j′ → rj′ in m steps each. Now we resolve these with pn,j′ → r̄j′ to
get m unit clauses p̄n,j′ with m steps. Resolving this with

∨m
l=1 pn,l completes

the refutation. This part has size O(m2).

We now modify SPn,m to get formulas SP′
n,m, these do have small tree-

like refutations as SPn,m, but we can prove a lower bound for ordered reso-
lution.

We call the pearls j ≤ n/4 special (we assume 4|n). For every special
pearl and every position on the string, we fix a position in the other half of
the string.

f(i, j) :=

{
n
2 + 2j − 1 for 1 ≤ i ≤ n

2

2j for n
2 < i ≤ n

Now for the special pearls (i.e., j ≤ n/4) the clauses (3.3) and (3.4) are
replaced by

pf(1,j),l ∧ p1,j → rj (3.6)
pf(n,j),l ∧ pn,j → r̄j (3.7)

for every l ∈ [m]. For 1 ≤ i < n
2 the clauses (3.5) are replaced by

pf(i+1,k),l ∧ pi,j ∧ rj ∧ pi+1,k → rk (3.8)

and for n
2 < i < n by

pf(i,j),l ∧ pi,j ∧ rj ∧ pi+1,k → rk (3.9)

again for every l ∈ [m] and only the special pearls (j ≤ n/4).

Lemma 3.9. There are tree-like refutations of SP′
n,m with size mO(log n).

Proof. By resolving the new clauses with the clauses (3.1), we get a tree-like
derivation of any of the removed clauses with size O(m). Thus we need only
a tree-like derivation of size p(m) for some polynomial p to derive all of the
removed clauses. Thus the upper bound for SPn,m in Lemma 3.8 on the
facing page is an upper bound for SP′

n,m, too.

Now we prove a lower bound for ordered resolution refutation of SP′
n,m.

Theorem 3.10. For sufficiently large n and m ≥ 9
8n, every ordered resolu-

tion refutation of SP′
n,m has at least size 2Ω(n log n).

Proof. For the sake of simplicity we assume n = 8k for some integer k.
N := nm + m is the number of variables in the formula. Let an ordering
x1, . . . , xN of the variables be given, i.e., each of the xν is one of the variable
pi,j or rj . Let R be an ordered refutation of SP′

n,m respecting this ordering.

38 CHAPTER 3. SIMULATIONS AND SEPARATIONS

We will now show that R contains at least k! different clauses, which implies
the theorem.

We now define S(i, ν) for a position i ∈ [n] and ν ≤ N to be the set of
special pearls (j ≤ 2k = n/4) such that pi,j is among the first ν eliminated
variables.

S(i, ν) := {j ≤ 2k | pi,j ∈ {x1, . . . , xν}}

Let ν0 be the smallest index such that |S(i, ν0)| = k for some position i, and
call this position i0. Thus |S(i, ν0)| < k for i 6= i0. In other words, i0 is the
first position for which k of the pi0,j with j ≤ 2k are eliminated.

Now we enumerate the elements of S(i0, ν0) in increasing order denoted
by j1, . . . , jk. For each 1 ≤ µ ≤ k, let iµ be the position f(i0, jµ). Note that
iµ 6= i0.

Further we define Rµ := [2k]\S(iµ, ν0), i.e., Rµ is the set of special pearls
j with the property that, on every path in the refutation R, the variable
piµ,j is eliminated after all the variables pi0,jκ for 1 ≤ κ ≤ k have been
eliminated. Since |S(iµ, ν0)| < k we have |Rµ| ≥ k.

Definition 3.11. A critical assignment is a total assignment that satisfies
all the clauses of SP′

n,m except exactly one of the clauses (3.1). For a critical
assignment α we define:

• The unique position iα ∈ [n] such that no pearl is placed at position iα
by α, i.e., α(piα,j) = 0 for every j ∈ [m].

• an injective mapping mα : [n] \ {iα} → [m] where, for every i 6= iα,
mα(i) is the pearl placed at position i by α, i.e., the unique j ∈ [m]
such that α(pi,j) = 1.

A critical assignment is called 0-critical if the gap is iα = i0 and
mα(iµ) ∈ Rµ for each 1 ≤ µ ≤ k, and moreover if the following impli-
cations hold:

• If i0 is in the left half (1 ≤ i ≤ n/2), then j1, . . . , jk are colored blue
(i.e., α(rj1) = . . . = α(rjk

) = 0).

• If i0 is in the right half (n/2 < i ≤ n), then j1, . . . , jk are colored red
(i.e., α(rj1) = . . . = α(rjk

) = 1).

Note that the positions i0, . . . , ik and the pearls j1, . . . , jk, and thus the
notion of 0-critical assignment, only depends on the order of the variables
and not on the refutation R.

The lower bound will now be proven in two steps. First we show that
there are many 0-critical assignments. Second we will map each 0-critical
assignment α to a clause Cα in R, and then show that not too many different
assignments can be mapped to one clause, thus there must be many clauses.

The first step is the following lemma.

3.1. TREE <> ORD 39

Lemma 3.12. For every choice of pairwise distinct pearls b1, . . . , bk with
bµ ∈ Rµ for 1 ≤ µ ≤ k, there is a 0-critical assignment α with mα(iµ) = bµ

for 1 ≤ µ ≤ k. In particular, there are at least k! 0-critical assignments that
disagree on at least one of the values mα(iµ) for 1 ≤ µ ≤ k.

Proof. First we assign non-special pearls to the positions not yet occupied,
i.e., we choose an arbitrary injective mapping from [n] \ {i0, i1, . . . , ik} to
[m] \ {b1, . . . , bk, j1, . . . , jk}. This is possible, since m ≥ 9

8n.
Now we color the pearls assigned to positions left of the gap red and

those assigned to positions right of the gap blue. Formally α(rmα(i)) = 1
for i < i0 and α(rmα(i)) = 0 for i > i0. The special pearls are colored as
required by the definition of 0-critical assignment. This is possible, since
special pearls can only appear if they are among the pearls b1, . . . , bk, and
these are in the half that does not contain i0 (by the definition of iµ). The
remaining pearls can be colored arbitrarily.

Fix any topological ordering of R. For a 0-critical assignment α, let Cα

be the first clause in R such that α does not satisfy Cα and

{j ≤ 2k | pi0,j occurs in Cα} = [2k] \ {j1, . . . , jk}.

This clause exists, since there is a path from
∨

j∈m pi0,j to the empty clause
such that no clause on this path is satisfied by α. The variables pi0,j with
j ≤ 2k are eliminated along this path and pi0,j1 , . . . , pi0,jk

are the first of
these in the elimination order.

Lemma 3.13. Let α be a 0-critical assignment. For every 1 ≤ µ ≤ k, the
literal p̄iµ,lµ, where lµ := mα(iµ), occurs in Cα.

Proof. We define an assignment α′ from α as follows: α′(pi0,jµ) := 1 and
α′(x) := α(x) for all variables x 6= pi0,jµ . By the definition of Cα it does
not contain pi0,jµ , thus α′ does not satisfy Cα. Because of the coloring
requirements in the definition of 0-critical assignment there is exactly one
clause in SP′

n,m that is not satisfied by α′, depending on where gap iα = i0
is:

i0 = 1: piµ,lµ ∧ p1,jµ → rjµ

1 < i0 ≤ n
2 : piµ,lµ ∧ p(i0−1),h ∧ pi0,jµ ∧ rh → rjµ where h = mα(i0 − 1)

n
2 < i0 < n: piµ,lµ ∧ pi0,jµ ∧ p(i0+1),h ∧ rjµ → rh where h = mα(i0 + 1)

i0 = n: piµ,lµ ∧ pn,jµ → r̄jµ

In all these cases p̄iµ,lµ occurs in the clause. There is a path from this
clause through Cα such that all clauses on the path are falsified by α′. The
last variable eliminated on this path is, by the definition of Cα, one of pi0,jκ

for 1 ≤ κ ≤ k. Since lµ ∈ Rµ, the variable piµ,lµ appears after pi0,jκ by the
definition of Rµ. Thus p̄iµ,lµ was not eliminated on this path, so p̄iµ,lµ still
occurs in Cα.

40 CHAPTER 3. SIMULATIONS AND SEPARATIONS

We can now finish the proof of the theorem. Take two 0-critical assign-
ments α and β such that lµ := mα(iµ) 6= mβ(iµ) for some 1 ≤ µ ≤ k. Then
β(piµ,lµ) = 0. By Lemma 3.13 on the previous page the literal p̄iµ,lµ occurs
in Cα, thus β satisfies Cα and therefore Cα 6= Cβ.

By Lemma 3.12 on the preceding page there are at least k! many 0-
critical assignments α that disagree on at least one of the values mα(iµ).
Thus R contains at least k! distinct clauses of the form Cα.

From Lemma 3.9 on page 37 and Theorem 3.10 on page 37 the following
corollary follows immediately.

Corollary 3.14. Ordered resolution is (exponentially) separated from tree-
like resolution, i.e., tree 6≤ ord.

3.2 Negative and Regular Resolution

In this section we will prove the incomparability of negative and regular
resolution.

3.2.1 Negative Resolution is Separated from
Regular Resolution

To prove the separation neg 6≤ reg we will use a family of formulas based
on the ordering principle. This principle states that for a finite set of size
n and a total linear ordering on this set, there is a minimal element. First
we define the formulas OPn which are contradictory due to this fact. OPn

contains the variables xij with i, j ∈ [n], i 6= j, where xij is assigned to 1 iff
i ≺ j in the ordering, and the following clauses.

xij ↔ x̄ji 1 ≤ i < j ≤ n (3.10)
x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 for any distinct i1, i2, i3 ∈ [n] (3.11)∨

k∈[n],k 6=j

xkj j ∈ [n] (3.12)

Note that the transitivity axioms (3.11) are written differently from the usual
form xi1i2 ∧xi2i3 → xi1i3 . The symmetric form used here is more convenient
for the following proofs and equivalent to the other form because of the
clauses (3.10). Note that there are exactly two such transitivity axioms for
any set of three distinct i1, i2, i3 ∈ [n].

Now, following a work by Alekhnovich et al. [2], we modify OPn to get
the formulas OP′

n,ρ. These have small positive refutations but (for some ρ)
large regular refutations. Let X be the set of the variables xij used in OPn.

3.2. NEG <> REG 41

We define the set T := {(i, j, k) | i, j, k ∈ [n], i 6= j 6= k}. We fix a mapping
ρ from T to X. Now OP′

n,ρ consists of the following clauses.

xij ↔ x̄ji 1 ≤ i < j ≤ n (3.13)
x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ ρ(i1, i2, i3) for x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∈ OPn (3.14)

x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ ¬ρ(i1, i2, i3) for x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∈ OPn (3.15)∨
k∈[n],k 6=j

xkj j ∈ [n] (3.16)

For each transitivity axiom in OPn there are two axioms in OP′
n,ρ, one with

the additional literal ρ(i1, i2, i3), the other with ¬ρ(i1, i2, i3). We consider
clauses as sets of literals, so we need to assume some arbitrary order of the
literals in the original transitivity axioms to get a well-defined order of the
arguments of ρ.

We will now prove an upper bound for resolution refutations of OP′
n,ρ.

This proof is based on a proof by Bonet and Galesi [9] for an upper bound
of OPn.

Theorem 3.15. There are polynomial size positive resolution refutations of
OP′

n,ρ.

Proof. First we introduce some abbreviations.

A(i, j, k) := x̄ij ∨ x̄jk ∨ x̄ki ∨ ρ(i, j, k) for any distinct i, j, k ∈ [n]
A′(i, j, k) := x̄ij ∨ x̄jk ∨ x̄ki ∨ ¬ρ(i, j, k) for any distinct i, j, k ∈ [n]

B(i, j) := xij → x̄ji i 6= j ∈ [n]
B′(i, j) := xij ← x̄ji i 6= j ∈ [n]

Cm(j) :=
m∨

i=1,i6=j

xij j ∈ [m],m ∈ [n]

Dj
k(i) := Ck−1(j) ∨ x̄ik k, i, j ∈ [n]

Ej
k(i) := Ck−1(j) ∨

k−1∨
l=i

clk k, i, j ∈ [n]

Note that A(i, j, k), A′(i, j, k), B(i, j), B′(i, j) and Cn(j) are the clauses of
OP′

n,ρ.
We will now derive (a superset of) OP′

n−1,ρ from OP′
n,ρ for n > 3 with

O(n) steps. The clauses (3.10) and (3.11) of OP′
n−1,ρ are already present

in OP′
n,ρ. Thus we need only to derive the clauses (3.12), i.e., Cn−1(j) for

j ∈ [n− 1].
This is done in the following way. For every j ∈ [n− 1] we first derive:

• Dj
n(j)

Cn(j) B(j, n)

Dj
n(j)

42 CHAPTER 3. SIMULATIONS AND SEPARATIONS

• Dj
n(i) ∨ ρ(n, j, i) for every i ∈ [n− 1] \ {j}

Cn(j) A(n, j, i)

Dj
n(i) ∨ x̄ji ∨ ρ(n, j, i) B′(j, i)

Dj
n(i) ∨ ρ(n, j, i)

• Dj
n(i) ∨ ¬ρ(n, j, i) for every i ∈ [n− 1] \ {j}

Cn(j) A′(n, j, i)

Dj
n(i) ∨ x̄ji ∨ ¬ρ(n, j, i) B′(j, i)

Dj
n(i) ∨ ¬ρ(n, j, i)

From these clauses we now derive for every j ∈ [n−1] the clause Cn−1(j).
First we derive Ej

n(2).

Cn(n) Dj
n(1) ∨ ρ(n, j, i)

Ej
n(2) ∨ ρ(n, j, i)

Cn(n) Dj
n(1) ∨ ¬ρ(n, j, i)

Ej
n(2) ∨ ¬ρ(n, j, i)

Ej
n(2)

Now we derive Ej
n(i) using Ej

n(i− 1) for i = 3, . . . , n− 1 and i 6= j + 1.

Ej
n(i− 1) Dj

n(i− 1) ∨ ρ(n, j, i− 1)

Ej
n(i) ∨ ρ(n, j, i− 1)

Ej
n(i− 1) Dj

n(i− 1) ∨ ¬ρ(n, j, i− 1)

Ej
n(i) ∨ ¬ρ(n, j, i− 1)

Ej
n(i)

For i = j + 1 we derive Ej
n(i) in the following way.

Ej
n(i− 1) Dj

n(i− 1)

Ej
n(i)

Finally we can derive Cn−1(j) using Ej
n(n− 1).

Ej
n(n− 1) Dj

n(n− 1) ∨ ρ(n, j, n− 1)

Cn−1(j) ∨ ρ(n, j, n− 1)

Ej
n(n− 1) Dj

n(n− 1) ∨ ¬ρ(n, j, n− 1)

Cn−1(j) ∨ ¬ρ(n, j, n− 1)

Cn−1(j)

This derivation is positive since Cn(j), B′(j, i), Ej
n(i) are positive clauses,

and one of these is used in every step. Thus we can positively derive OP′
3,ρ

from OP′
n,ρ in O(n2) steps. Since there is, due to the completeness of positive

resolution, a positive refutation of OP′
3,ρ, we can refute OP′

n,ρ in O(n2)
steps.

3.2. NEG <> REG 43

Before we prove the lower bound for regular refutations, we first intro-
duce some definitions and lemmas. This follows (with some small clarifica-
tions) the work by Alekhnovich et al. [2]. The proof is also due to them.

Definition 3.16. For an assignment α let Supp(α) be the set of all i ∈ [n]
such that α assigns xij or xji to a value for some j.

Definition 3.17. An assignment is called critical if it assigns all variables
xij to a value and falsifies only one of the clauses (3.12) of OPn.

Let S ⊂ [n]. We call an assignment α a partial critical assignment for
S iff it fulfills the following two conditions:

• {xij | i, j ∈ S} is the domain of α.

• Cdα 6= 0 holds for every clause C ∈ OPn.

A critical assignment specifies a linear ordering of [n] with one minimal
element. A partial critical assignment for S corresponds to an ordering of
S. There is a bijective mapping between the orderings of S and the partial
critical assignments for S. Note that for a partial critical assignment α for
S, Supp(α) = S.

Lemma 3.18. Let α be a partial critical assignment with |Supp(α)| < n−2
and xij unassigned by α. Then for ε ∈ {0, 1}, α can be extended to a (partial)
critical assignment α′ with |Supp(α′)| ≤ |Supp(α)|+2 such that α′(xij) = ε.

Proof. α induces a linear ordering of Supp(α). We need to add one or two
new elements to Supp(α) (depending on whether both i and j or only one
of them is in Supp(α)). We can clearly choose i ≺ j or j ≺ i and insert
the element(s) into the ordering correctly. We choose depending on ε. For
this ordering we have again a corresponding assignment α′. The inequality
follows from the fact that α′ talks about at most two elements more than
α.

Lemma 3.19. Let α be a partial critical assignment with |Supp(α)| ≤ n/100
and i1, i2, i3 distinct elements of [n] \ Supp(α). Then α can be extended to
a total assignment that satisfies all clauses of OPn except

x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 .

Proof. We extend the ordering induced by α on Supp(α) to a total ordering
on [n]. First we extend α to an arbitrary partial critical assignment on
[n] \ {i1, i2, i3}. Then we set i1 ≺ i2 ≺ i3 ≺ i1 and let i1, i2, i3 be greater
than all other elements.

Lemma 3.20. For sufficiently large n, there is a ρ such that for every S and
xij, where S ⊂ [n] and |S| ≤ n/100, and xij one of the variables of OPn,
there are three distinct elements i1, i2, i3 ∈ [n]\S such that ρ(i1, i2, i3) = xij.

44 CHAPTER 3. SIMULATIONS AND SEPARATIONS

Proof. Fix a set S with |S| ≤ εn, ε = 1/100, and some xij . The probability
that there are no distinct i1, i2, i3 ∈ [n] \ S such that ρ(i1, i2, i3) = xij is at
most (

n(n− 1)− 1
n(n− 1)

)(n−εn
3)

≤
(

1− 1
n2

)(n−εn
3)

≤
(

1− 1
n2

)(n−εn)3/12

=
(

1− 1
n2

)n3(1−ε)3/12

≤ e−n(1−ε)3/12 (remember
(

1− 1
x

)x

≤ e−1)

The second inequality holds since (n − εn − 2) > n−εn√
2

(for sufficiently
large n) and thus (

n− εn

3

)
=

(n− εn)(n− εn− 1)(n− εn− 2)
6

≥
(n− εn) (n−εn)√

2

(n−εn)√
2

6
= (n− εn)3/12.

Thus the probability that for some S with |S| ≤ εn and some xij there
are no distinct i1, i2, i3 ∈ [n] \ S such that ρ(i1, i2, i3) = xij is at most

n2 ·
(

n

εn

)
· e−n(1−ε)3/12

= n2 · n!
(n− εn)!(εn)!

· e−n(1−ε)3/12

≤ n3 · (1/(1− ε))n−εn · (1/ε)εn · e−n(1−ε)3/12

= e3 ln n · e(n−εn) ln(1/(1−ε)) · eεn ln(1/ε) · e−n(1−ε)3/12

The third line follows from Stirling’s approximation (n! ≥ (n/e)n in
the denominator and n! ≤ n(n/e)n in the numerator). This probability is
strictly smaller than 1 if

3 ln n + (n− εn) ln(1/(1− ε)) + εn ln(1/ε)− n(1− ε)3/12 < 0

holds. This is the case for ε = 1/100 if n is sufficiently large. Thus the
probability that a randomly chosen ρ satisfies the lemma is strictly larger
than 0. And thus such a ρ exists.

3.2. NEG <> REG 45

Theorem 3.21. For a sufficiently large n, there is a ρ such that any regular
refutation of OP′

n,ρ has a size greater than 2n/200.

Proof. First we fix some ρ that does satisfy the condition in Lemma 3.20 on
page 43. Now we show that a regular refutation R of OP′

n,ρ contains a set
of paths, each of which contains a clause that is contained in none of the
others, and there are at least 2n/200 such paths.

We will define for each node ν on such a path a partial critical assignment
αν that falsifies the clause ν. We build this set incrementally starting with
one path (2) and α2 = ∅. All the paths will start in 2.

Now assume there are already l paths defined, that end with ν1, . . . , νl.
For every path where |Supp(ανk

)| < n/100, we do the following:

• νk is an axiom: This cannot happen, since νk is falsified by a partial
critical assignment and these assignments falsify none of the axioms.

• νk was derived by copying the label from its only predecessor: We
extend the path with this node and do not change the assignment.

• νk was derived by the elimination of xij , and ανk
assigns xij to a value:

We extend our path with the predecessor that is not satisfied by ανk

and do not change the assignment.

• Otherwise we call νk a branching node, and it is derived by the elimi-
nation of xij from νk0 and νk1 , and ανk

does not assign xij to a value.
In this case we extend the path in two ways by appending νk0 or νk1

(here we increase the number of paths). By Lemma 3.18 on page 43 we
can extend ανk

to ανk0
such that ανk0

is a partial critical assignment
that falsifies νk0 with |Supp(ανk0

)| ≤ |Supp(ανk
)+2. In the same way

we get the assignment ανk1
.

We repeat this until every path ends in a node ν with |Supp(αν)| ≥
n/100. Since the value of |Supp(αν)| is increased at most by 2 in any branch-
ing node, every path must have at least n/200 branching nodes. Hence there
are 2n/200 distinct paths. To prove the theorem we only need to show that
any two paths do not have any nodes in common after they diverged.

We prove this by contradiction. Assume two paths diverge in node ν1 and
merge again in ν2. Let xij be the variable that is eliminated to derive ν1. The
assignments on both paths assign xij to different values, and extensions of
both falsify ν2. Hence ν2 cannot contain xij or x̄ij . Furthermore, no clause
that ν2 is derived from can contain the variable xij since it is eliminated
between ν2 and the empty clause and R is regular.

Now we choose i1, i2, i3 ∈ [n] \ Supp(αν2) by Lemma 3.20 on page 43
such that ρ(i1, i2, i3) = xij . Now we extend αν2 by Lemma 3.19 on page 43
to a total assignment α′ in such a way that all axioms of OP′

n,ρ except
x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ xij or x̄i1i2 ∨ x̄i2i3 ∨ x̄i3i1 ∨ x̄ij are satisfied. α′ falsifies

46 CHAPTER 3. SIMULATIONS AND SEPARATIONS

ν2 since α′ is an extension of αν2 . Hence ν2 must be derived from some
axiom that is falsified by α′. But all violated axioms contain xij , which is a
contradiction, since ν2 cannot contain xij .

Remark 3.22. Note that a simplified version of this proof can be used to
prove a lower bound of 2

n
2
−1 for tree-like refutations of OPn. According to

Johannsen [25], there are short regular proofs for OPn, so these formulas
can be used to prove the separation between regular and tree-like resolution.

Now we define the formulas OP′
n,ρ from the formulas OP′

n,ρ. OP′
n,ρ is

identical to OP′
n,ρ but with the sign of every literal flipped, i.e., every literal

xε is replaced by x1−ε. OP′
n,ρ is clearly unsatisfiable. The lower bound

(Theorem 3.21 on the previous page) for regular refutations of OP′
n,ρ applies

to OP′
n,ρ as well, since any regular refutation of OPn,ρ can be transformed

to a regular refutation of OP′
n,ρ by flipping the signs of all literals. A small

positive refutation of OP′
n,ρ (Theorem 3.15 on page 41) can, in the same

way, be transformed into a negative refutation of OP′
n,ρ. This implies the

following corollary.

Corollary 3.23. Regular resolution does not simulate negative resolution,
i.e.,

neg 6≤ reg.

3.2.2 Negative Resolution does Not Simulate
Regular Resolution

The separation neg 6≥ reg is implied by reg 6≤ sem, as proven in Section 3.11
and neg ≤ sem.

3.3 Regular and General Resolution

In this section we will show reg < dag. That reg ≤ dag follows immediately
from the definition.

The separation reg 6≥ dag was first proven by Goerdt [19]. It was later
improved by Alekhnovich et al. [2]. It follows directly from Corollary 3.23
and dag ≥ neg.

3.4 Tree-like and General Resolution

Here we show tree < dag. That tree ≤ dag follows immediately from the
definition, and the separation tree 6≥ dag follows via transitivity from Corol-
lary 3.7 on page 35 (ord 6≤ tree) and ord ≤ dag.

3.5. TREE < REG 47

3.5 Tree-like and Regular Resolution

To prove tree < reg, we first need tree ≤ reg. This follows from Theorem 1.9
on page 16, which shows that every tree-like resolution refutation can be
converted to a regular tree-like refutation without increasing its size.

In Section 3.1.1 we proved tree 6≥ ord. Since every ordered proof is also
regular, this implies tree 6≥ reg. For another way to prove this separation
see Remark 3.22 on the facing page.

3.6 Ordered and Regular Resolution

Here we show ord < reg. The simulation ord ≤ reg follows immediately
from the definition.

The separation ord 6≥ reg was first proven by Goerdt [17]. A better
separation results from the separation tree 6≤ ord, as proven in Section 3.1.2.
Together with the fact that regular resolution simulates tree-like resolution
(Theorem 1.9 on page 16), this exponentially separates regular from ordered
resolution.

3.7 Regular Resolution and
Regular Tree-like Resolution with Lemmas

That reg ≤ rtrl follows directly from the fact that for every regular refutation
there is a tree so that said refutation is a regular tree-like refutation with
lemmas.

Theorem 3.24. Regular tree-like refutation with lemmas simulates regular
resolution.

Proof. Let R be a regular1 proof of the formula F . We will construct a rtrl
proof R′ with |R′| ≤ 3 · |R|.

We do a depth first search starting with the empty clause and visiting
the left predecessor first. After the DFS is finished, we split all non-tree
edges in two by adding a new node in the middle. The new node (a lemma)
is labeled by the clause on the starting node of the original edge. The edge
ending in the original ending node is marked as part of the tree. The result
is a regular tree-like refutation with lemmas.

The marked edges form a tree, since we just added edges pointing to new
nodes to the tree resulting from the DFS.

All edges to lemmas are in fact from left to right, since the edge we split
was not part of the DFS tree, thus the starting node was already in the tree
and, since we visited the left part first, left of the current node.

1Note that the same proof shows that tree-like resolution with lemmas simulates general
resolution.

48 CHAPTER 3. SIMULATIONS AND SEPARATIONS

And since R is regular, the tree is regular, too, since we did not add any
new eliminations. Since every node has at most two predecessors and we
only duplicate these, R′ can have at most size 3 · |R|.

There is currently work in progress to prove a separation between regular
resolution and regular tree-like resolution with lemmas [22].

3.8 Tree-like and Negative Resolution

In this section we will prove tree < neg. First we prove that tree-like resolu-
tion is simulated by negative resolution (tree ≤ neg). This fact was already
known [11], but a proof could not be found in the available literature.

Theorem 3.25. If there is a tree-like refutation R of F , then there is a
negative refutation of F with a size of at most l·|R|, where l := min(|R|, |F |).

Proof. Let Fx ⊂ F be the set of all clauses containing x, and let Fx̄ ⊂ F
be the set of all clauses containing x̄. Let s be the size of R. We prove the
theorem by induction on s. The case s = 1 is obvious.

Otherwise R ends with:
x̄ x

2

Then there are tree-like derivations Rx and Rx̄ of x and x̄ from F with
|Rx| + |Rx̄| + 1 = s. By Theorem 1.7 on page 16 there are refutations R′

x

and R′
x̄ of F dx=0 and F dx=1 with |R′

x| ≤ |Rx| and |R′
x̄| ≤ |Rx̄|.

By the induction hypothesis there is a negative refutation Px̄ of F dx=1

with |Px̄| ≤ l|R′
x̄|. If no clause of Fx̄dx=1 is used in Px̄, then Px̄ is a refutation

of F , and we are done. Otherwise we add x̄ to all clauses of Fx̄dx=1 that
are used in Px̄, and all clauses derived from these (directly or indirectly), to
obtain a negative derivation of x̄ from F of size at most l|R′

x̄|.
By the induction hypothesis there is a negative refutation Px of F dx=0

with |Px| ≤ l|R′
x|. Each of these clauses C in Fxdx=0 that are used by Px can

be derived in one step from the clause C ∨ x in F using x̄ as derived before.
We need at most l steps for this. By this we get a negative refutation of F
with a size of at most

l|R′
x̄|+ l|R′

x|+ l ≤ l|Rx̄|+ l|Rx|+ l = l(|Rx̄|+ |Rx|+ 1) = ls.

The separation tree 6≥ neg follows directly from Corollary 3.23 on page 46
and tree ≤ reg (Section 3.5 on the preceding page). It was first proven by
Bonet and Galesi [9].

3.9. NEG < SEM 49

3.9 Negative and Semantic Resolution

In this section we show neg < sem. It follows immediately from the definition
that neg ≤ sem.

To show the separation we will reuse the pebbling formulas PG defined
on page 32 in Section 3.1.1.

Lemma 3.26. There is a positive (and thus semantic) resolution refutation
R of PG with |R| = O(n).

Proof. We derive x0(v)∨ x1(v) =: C for every v, following some topological
ordering. For a source v we already have this in the formula. For any other
node we already have derived this clause for each of its predecessors (v1 and
v2), so we can derive it with a fixed number of steps.

x0(v1) ∨ x1(v1) x̄0(v1) ∨ x̄0(v2) ∨ C

x1(v1) ∨ x̄0(v2) ∨ C x0(v2) ∨ x1(v2)

x1(v1) ∨ x1(v2) ∨ C

x1(v1) ∨ x1(v2) ∨ C x̄1(v1) ∨ x̄0(v2) ∨ C

x̄0(v2) ∨ x1(v2) ∨ C x0(v2) ∨ x1(v2)

x1(v2) ∨ C

In the same way we derive x0(v1) ∨ C.

x1(v2) ∨ C x̄0(v1) ∨ x̄1(v2) ∨ C

x̄0(v1) ∨ C x0(v1) ∨ C

C

Resolving x0(vn)∨x1(vn) with x̄0(vn) and x̄1(vn) yields the empty clause.
This proves the lemma.

The lower bound for negative resolution on this formulas was shown by
Buresh-Oppenheim et al. [10]. First we define simplified pebbling formulas
P′

G.
P′

G is constructed from a dag G = (V,E) as follows. For every v ∈ V ,
there is one variable x(v). Now P′

G consists of the following clauses:

• a source axiom x(v) for every source v

• a sink axiom x̄(v) for every sink v

• a pebbling axiom
x(u1) ∧ x(u2)→ x(v)

for every non-source node v with the predecessors u1 and u2

50 CHAPTER 3. SIMULATIONS AND SEPARATIONS

Lemma 3.27. Let R be a negative resolution refutation of PG of size s.
Then there is a negative resolution refutation R′ of P′

G such that every clause
in R′ contains at most log2 s negative literals.

Proof. We obtain the refutation R′ from R by applying a restriction ρ with
the following property: For every node v, one of the variables x0(v) or x1(v)
is set to 0, the other one is not assigned to a value. It is clear that R′ is,
after renaming the unset variables xε(v) to x(v), a refutation of P′

G.
Now we consider a randomly taken ρ where the choice for each node

is independent and where each of the two variables is chosen with equal
probability. If a clause in R contains k negative literals, then it is left
unsatisfied by ρ with a probability of at most 2−k. Thus, the probability
that R′ still contains some clause with more than log2 s negative literals is,
since there at most s such clauses in R, at most s ·2−(log2(s)+1), which is less
than one. Therefore there is a ρ such that R′ contains only clauses with at
most log2 s negative literals.

Lemma 3.28. If P′
G has a negative refutation such that every clause con-

tains at most k negative literals, then Peb(G) ≤ k + 1.

Proof. Note that P′
G contains only clauses with at most one positive literal.

Thus resolving a negative clause with an axiom yields a negative clause. The
only negative clauses in P′

G are the sink clauses, namely x̄(t) with t a sink
in G. Every negative refutation forms a list x̄(t) = C0, C1, . . . , Cl−1, Cl = 2,
where each clause Ci with i > 0 is derived from Ci−1 and an axiom. Note
that, while a clause could potentially be used with multiple axioms, only
one of the results can be used on a path to 2.

From this list we construct a pebbling of G in the following way: We
define a sequence (Di)0≤i≤l of sets of vertices with Di := {v | x̄(v) ∈ Cl−i}.
This sequence induces a pebbling of G. It is obvious that D0 = ∅ and
Dl = {t}.

If Ci is obtained by resolving on x(v) with a source axiom, then Dl−i+1 =
Dl−i ∪ {v}, i.e., a pebble is put on a source. If Ci is obtained by resolving
on x(v) with a pebbling axiom x(v1)∧ x(v2)→ x(v), then Dl−i has pebbles
on v1 and v2. Hence we can obtain Dl−i+1 by putting a pebble on v and
removing the pebbles from v1 and v2 afterwards. The intermediate set con-
tains |Dl−i| + 1 = |Ci| + 1 nodes. This pebbling has thus a complexity of
k + 1.

These two lemmas immediately imply the following corollary.

Corollary 3.29. Any negative refutation R of PG has a size of at least
2Ω(Peb(G)).

Since there are graphs with pebbling numbers of at least Ω(n/ log n)
(Theorem 1.14 on page 22), this corollary together with the upper bound in
Lemma 3.26 on the preceding page yields the separation and thus neg < sem.

3.10. ORD <> SEM 51

3.10 Ordered and Semantic Resolution

The incomparability of ordered and semantic resolution (ord <> sem) is
proven in this section.

3.10.1 Ordered Resolution is Separated from
Semantic Resolution

This separation was proven by Buresh-Oppenheim and Pitassi [11]. The
formulas are based on the simplified pebbling formulas introduced in Sec-
tion 3.9 on page 49. Note that we use here dags with arbitrary in-degree, as
long as it is bounded by O(log |V |). First we introduce the formulas, then
we introduce some additional definitions and lemmas.

PPG is constructed from a dag G = (V,E) as follows. For every v ∈ V ,
there is one variable v. We will identify each node with its variable. Now
PPG consists of the following clauses:

• a source axiom v for every source v

• a sink axiom v̄ for every sink v

• a pebbling axiom
k∧

i=1

ui → v

for every non-source node v with the predecessors ui, i = 1, . . . , k

Definition 3.30. Let G = (V,E) be a dag and S, T ⊂ V . We define a
c-pebbling from S to T in the same way as a pebbling2 from S to T , but for
the last pebble-configuration Ck we replace the condition Ck ∩ T 6= ∅ with
Ck ⊇ T , i.e., a c-pebbling needs to put pebbles on the complete set T , not
only on one node in T . We will call a c-pebbling from the sources of G to
T a c-pebbling of T . And we will write c-pebbling of t instead of c-pebbling
of {t}.

cPeb(G, S, T) and cPeb(G) are defined as Peb(G, S, T) and Peb(G),
resp., but using a c-pebbling instead of a pebbling.

Observation 3.31. Note that T ⊂ T ′ implies cPeb(G, S, T) ≤ cPeb(G, S, T ′).
This does not hold for normal pebbling.

Definition 3.32. We call a dag G layered if the nodes can be assigned to
layers 1 to m, while obeying the following rules. Each node is assigned to
exactly one layer, all sinks are in layer 1, all sources are in layer m, and all
edges are from nodes in layer i to nodes in layer i − 1. We will write V (i)

to denote the nodes in layer i.
2See Section 1.2.5 on page 21 for the definition of pebbling.

52 CHAPTER 3. SIMULATIONS AND SEPARATIONS

We call a layered dag G with
∑m

i=1 i nodes pyramid-like if there are
exactly i nodes on layer i.

We call a layered dag r-expanding,, if for any layer i < m and any
subset S of V (i) with |S| ≤ d|V (i)|/re, there are more than |S| nodes in layer
i + 1 with edges to nodes in S.

We will use Pyr(m, d) to denote the following distribution on pyramid-
like dags with m layers. For each node v on layer 1 ≤ i < m there are d
nodes on layer i + 1 chosen randomly and independently with replacement.
The set of the chosen nodes is then the set of v’s parents.

Lemma 3.33. Let G be an r-expanding layered graph with m layers, such
that each layer i contains at least r·i nodes. Then for any node v in layer 1
we have cPeb(G, ∅, {v}) ≥ m.

Proof. Let t be a node in layer 1. In any c-pebbling of t there must be a
configuration that puts a pebble on at least one node in each path from a
source to t. The second to last configuration is such a configuration, since
there must be a pebble on each predecessor of t. Let Ci be the first such
configuration. In Ci−1 there is is a path p from a source s to to t that
does not contain a pebbled node. Since every node in p has at least one
unpebbled predecessor, the step from Ci−1 to Ci is to put a pebble on s.
Let p = (s = pm, . . . , p1 = t). Now each path from a source other than s
to a node pi must contain at least one pebbled node, since each such path
together with the path from pi to t is a path from a source to t which is
pebbled in Ci, and as we have shown, the only pebble on p pebbles s. Now
we show that there are at least m− 1 such paths which are vertex-disjoint.
Together with the pebble on s we get the lower bound on the cPeb(G, ∅, {v})
we want.

We construct a set of these paths as follows. First let X1 := {p1}. Since
G is r-expanding, there is at least one predecessor of p1 other than p2. Let
pred(p1) be one. Now let X2 := {pred(p1), p2}. We want each Xi, i < m
to be a subset of V (i) with size i. We construct the further Xis as follows:
Since Xi has at most 1/r times the size of V (i) and G is r-expanding, Hall’s
theorem guarantees that there is a matching from Xi into the set of its
predecessors minus pi+1. Let Xi+1 be the set of this matched predecessors
plus pi+1. Finally the matchings used at each step form vertex-disjoint paths
from each of the m− 1 nodes in Xm−1 to the nodes in p.

Definition 3.34. For every assignment α we define a function fα. fα flips
the signs of all literals whose variables are set to one by α, i.e., fα(F) results
from F by replacing x by x̄ and vice versa for all x with α(x) = 1.

Note that if R is an ordered resolution refutation of F , then fα(R) is an
ordered refutation of fα(F).

3.10. ORD <> SEM 53

Lemma 3.35. For every formula F and every assignment β, for a semantic
refutation R of F , there is a semantic refutation of the same width and size
of fβ(F).

Proof. Let α be the assignment used by R, i.e., α is the assignment given
with R that satisfies the constraint for semantic resolution. fβ(R) is now a
semantic refutation of fβ(F) using the assignment α⊕β. Clearly fβ(R) has
the same size and width as R.

Definition 3.36. Let F be a formula using the variables x1, . . . , xn, and
let x′1, . . . , x

′
n be a disjoint set of variables. Now we define the xorification

of a literal xε
i as the formula XOR(xε

i) = xi ⊕ x′i ⊕ ε. The xorification
XOR(C) of a clause C =

∨k
j=1 lj is the formula in CNF that is equivalent to∨k

j=1 XOR(lj). The xorification of F is the conjunction of the xorifications
of its clauses.

Note that XOR(F) of an unsatisfiable formula F with width k and m
clauses is an unsatisfiable formula with width 2k and at most 2km clauses,
since XOR(C) consists of at most 2k clauses, because of the translation to
CNF. Furthermore, for an assignment α that assigns for every i exactly one
variable, either xi or x′i, to a value, XOR(F)dα is, after renaming variables,
equivalent to fβ(F) for some assignment β.

There is a connection between the size and the width of semantic refu-
tation of the formulas resulting from xorification:

Lemma 3.37. Let F be a formula, R1 a minimum-width semantic refutation
of F , and R2 a minimum-size semantic refutation of XOR(F). Then R2 has
at least size exp(Ω(w)), where w is the width of R1.

Proof. Let s be the size of R2 and x1, . . . , xn the variables occurring in F .
Now we choose an assignment α randomly. For each i we choose uniformly
one of the variables xi and x′i as well as a truth value for the chosen variable.
A clause C from R2 with width at least w appears in R2dα with probability
at most

(
3
4

)w. Hence the expected number of such wide clauses that remain
in R2dα is at most s ·

(
3
4

)w.
Now we prove by contradiction that s must be at least

(
4
3

)w. Assume
s <

(
4
3

)w. Then this expectation value is smaller than 1, thus there exists a
ρ such that R2dα does not contain any wide clause. Since R2dα contains a
semantic refutation of XOR(F)dα (see the proof of Theorem 1.7 on page 16),
there is by Lemma 3.35 also a refutation of F with width less than w. This
contradicts the minimal width of R1.

Definition 3.38. Let F1, . . . , Fl be formulas using the variables x1, . . . , xn

with l = 2c. Let Y = {y0, . . . , yc−1} be a disjoint set of variables. For

54 CHAPTER 3. SIMULATIONS AND SEPARATIONS

0 ≤ i < l, let b(i) be the interpretation of i as a bit-string of length c and let
b(i)(j) be the j-th bit in this string. Now we define

F ′
i := {C ∨ y

b(i)(0)
0 ∨ . . . ∨ y

b(i)(c−1)
c−1 | C ∈ Fi}.

Using this, we define

joinY (F1, . . . , Fl) :=
l⋃

i=1

F ′
i .

Informally joinY (F1, . . . , Fl) is the conjunction of all clauses of the for-
mulas Fi, where each clause is marked with i encoded in the signs of the
added yj variables. Now we prove that joinY (F1, . . . , Fl) is at least as hard
as the hardest Fi.

Lemma 3.39. Let F1, . . . , Fl be formulas using the variables x1, . . . , xn with
l = 2c. Let Y = {y0, . . . , yc−1} be a disjoint set of variables. Let F :=
joinY (F1, . . . , Fl).

For semantic (negative, regular, tree-like, general) resolution the follow-
ing relationships hold: s(F) ≥ maxl

i=1 s(Fi) and w(F) ≥ maxl
i=1 w(Fi),

where s(G) is the minimal size of any semantic (negative, regular, tree-like,
general) refutation of the formula G, and w(G) is the minimal width of any
semantic (negative, regular, tree-like, general) refutation of the formula G.

Proof. Let 1 ≤ i ≤ l. Take a refutation R of F with width w and size s.
Note that F dα, where α sets yj to 1 − b(i)(j) (and no other variables), is
exactly Fi. Hence by Corollary 1.8 on page 16 there is a refutation of Fi

with width at most w and size at most s.

Lemma 3.40. For every assignment β there is an ordered resolution refu-
tation R of XOR(fβ(PPG)) with |R| = O(p(n)) for some polynomial p.

Proof. During this proof we will abbreviate u1−β(u) (i.e., a variable occuring
positively in PPG) with βu, and uβ(u) with βū.

We first fix some topological ordering u1, . . . , un of G. Now following this
ordering we derive XOR(βui) = (βui ∨ βū′i) ∧ (βūi ∨ βu′i) for every ui. For a
source ui we already have this in the formula. For any other node we already
have derived these clauses for each of its predecessors vi, i = 1, . . . , k, since
these occur earlier in the topological ordering.

The formula consisting of the clauses βvi, i = 1, . . . , k and
∨k

i=1
β v̄i is

clearly unsatisfiable. Thus its xorification is as well. Since it uses only 2k
variables, there is by Observation 1.6 on page 15 an ordered refutation with

3.10. ORD <> SEM 55

a size of at most 2O(k) compatible with the above ordering. Note that k is
the in-degree of node u which is bounded by O(log |V |).

By appending one of the clauses C of XOR(βui) to XOR(
∨k

i=1
β v̄i) we get

a derivation of C, and by duplicating this using the other one, a derivation
of XOR(βui). The resulting derivation does still obey the ordering and does
not resolve on ui or u′i.

After deriving XOR(βun) we finish the refutation by resolving XOR(βun)
with XOR(βūn) = (βun ∨ βu′n) ∧ (βūn ∨ βū′n).

βun ∨ βu′n
βun ∨ βū′n

u′nβun

βūn ∨ βū′n
βūn ∨ βu′n

u′nβūn
un

2

This proves the lemma.

Lemma 3.41. Let F0, . . . , Fl−1 be formulas using the variables x1, . . . , xn

with l = 2c. Let Y = {y0, . . . , yc−1} be a disjoint set of variables. As-
sume that for some ordering of the variables there are ordered refutations of
XOR(Fi) of polynomial size for each i. Then there is an ordered refutation
of F := XOR(joinY (F0, . . . , Fl−1)), whose size is polynomial in n and l.

Proof. Fix some 0 ≤ i < l. Now fix one clause Ci from XOR(yb(i)(0)
0 ∨ . . . ∨

y
b(i)(c−1)
c−1). Now the set of clauses in F that contain Ci as a subclause is

exactly XOR(Fi) if Ci is removed from each of these clauses. Hence we can
derive Ci from these clauses using the ordered refutation of XOR(Fi). We
do this for every choice of i and Ci.

We have now derived XOR(
∧l−1

i=1 y
b(i)(0)
0 ∨ . . . ∨ y

b(i)(c−1)
c−1) without elimi-

nating any of the variables yj . This formula is unsatisfiable and has c = log l
variables. By Observation 1.6 on page 15 any ordered refutation of a for-
mula with c variables has a size of at most 2O(c). Hence there is an ordered
refutation of this formula with a size polynomial in l.

Now we prove a lower bound for semantic resolution. In the following
we will use the term α-refutation to denote a resolution refutation with the
property that one of the clauses used in each resolution step is falsified by
the assignment α.

Let G be a graph and α, β total assignments. Now consider an α-
refutation R of fβ(PPG). Let ē(α, β) be the set of nodes v with α(v) 6= β(v).
Let G′ be the induced subgraph on the nodes ē(α, β). For a clause C in R,
let zeros(C, β) be the set of variables that appear in C as vβ(v). We call
these literals β-negative. We will call the other literals β-positive. Note that
the variables that occur β-positively in a clause of fβ(PPG), occur positively
in the corresponding clause of PPG (and analogously for β-negative).

56 CHAPTER 3. SIMULATIONS AND SEPARATIONS

Lemma 3.42. Let C be a clause in R, where one variable v occurs β-
positively with v ∈ ē(α, β). Then all parents of v in G′ occur β-negatively in
C.

Proof. We prove this by induction on the maximal length of a path between
C and an axiom in the proof. The only axiom that contains v β-positively
contains all parents of v β-negatively.

Now let C be the resolvent of the clauses C1 and C2. v occurs β-positively
in C1 or C2. W.a.l.o.g. v occurs β-positively in C1. By induction C1 contains
all G′-parents of v. Assume that C does not contain all of these. Then one
of them is eliminated in the resolution step. We call this one u. Note that
u ∈ ē(α, β), since it is a node in G′. Since u occurs β-negatively in C1, it
occurs β-positively in C2. Now α satisfies C1, since v ∈ ē(α, β) and v occurs
β-positively in C1. Since u ∈ ē(α, β) and u occurs β-positively in C2, α
satisfies C2, too. Thus C1 cannot be resolved with C2 in the α-refutation R.
Thus C contains all the G′-parents of v.

Lemma 3.43. For any clause C in R, let SC := zeros(C, β) ∩ ē(α, β). If
cPeb(G′, ∅, SC) = p, then on the path from C to 2 there is at least one
clause with p β-negative literals.

Proof. We prove this by induction on the length of the (shortest) path be-
tween C and 2. For C = 2 we have SC = ∅, and there is nothing to
prove.

Now assume C is some other clause. Then C is resolved with some
clause D yielding E with a shorter path from E to 2. If SE ⊇ SC , then
we are done by the induction hypothesis and Observation 3.31 on page 51.
Otherwise the eliminated variable v is in SC , and thus it occurs β-negatively
in C. Hence v occurs β-positively in D, and by Lemma 3.42 , D contains
all the G′-parents of v β-negatively. Therefore E contains these as well.
Therefore we can easily pebble from SE to SC , which proves, together with
the induction hypothesis for E, the induction assertion for C.

Lemma 3.44. Let G be a pyramid-like dag with n nodes, and let α and β
be total assignments. Let G′ be the induced subgraph on ē(α, β) as above.
If G′ contains a node v with cPeb(G′, ∅, {v}) = p such that there is a path
in G from v to the sink t, then any α-refutation R of fβ(PPG) contains a
clause with at least p β-negative literals.

Proof. There is at least one axiom in fβ(PPG) that contains v β-negatively
(either a pebbling axiom of an antecessor of v—there is one if v 6= t since
there is a path from v to t—, or v’s sink axiom). This axiom is used in
R, since fβ(PPG) is satisfiable without it (again since there is a path from
v to t). Therefore, by Lemma 3.43 , R contains a clause with at least p
β-negative literals.

3.10. ORD <> SEM 57

Lemma 3.45. For infinitely many n and any n′ ≥ n, there are assign-
ments β1, . . . , βn′ ∈ {0, 1}n and pyramid-like graphs G1, . . . , Gn′ of in-degree
O(log n) with n nodes such that the following holds: For any (total) assign-
ment α, there is an i such that any α-refutation of fβi

(PPGi) contains one
clause with Ω(

√
n) βi-negative literals.

Proof. Since only the settings of the n variables in PPGi are relevant, we
identify total assignments which set these to the same values. And we iden-
tify each assignment to these variables with a bitstring of length n (where
each variable is associated with one position on the bitstring).

Fix m sufficiently large with 8|m and let n =
∑m

i=1 i. Let n′ ≥ n. Now
we choose β1, . . . , βn′ randomly and independently from the uniform distri-
bution on {0, 1}n. We choose G1, . . . , Gn′ from the distribution Pyr(m, d)
with d > log8/5 m. Fix α ∈ {0, 1}n. G′

i denotes, as above, the subgraph of
Gi induced by ē(α, βi).

First we show that, with high probability, there is one G′
i that satisfies

the conditions of Lemma 3.33 on page 52. Fix 1 ≤ i ≤ n′. Now layer j of G′
i

is expected to contain j/2 nodes. By Chernoff’s bound, the probability that
it contains fewer than j/4 nodes is less than exp(−j/16). The probability
that any of the m/8 layers from m to 7

8m + 1 has less than j/4 nodes is at
most

m∑
j=(7/8)m+1

exp
(
− j

16

)
≤ m

8
· exp

(
− 7m

128

)
.

Now we bound the probability that any subset of layer j of size s ≤ j/8
is not expanding into layer j + 1 for j < m. Fix some subset S1 of size s
from layer j and a subset S2 of size s from layer j + 1. S1 is not expanding
if every parent v of every node in S1 is either in S2 or not at all in G′

i.
The probability for the first is at most s/(j + 1), the probability for the
second is 1/2. The probability that any of these things happens is at most
1/2+s/(j+1) < 5/8. Therefore the probability that layer j does not expand
into layer j + 1 is bounded by

j/8∑
s=1

(
j + 1

s

)2(5
8

)ds

<

j/8∑
s=1

(
j + 1

s

)2 1
m5s

≤
j/8∑
s=1

(
j + 1

s

)2 1
(j + 1)5s−2m2

58 CHAPTER 3. SIMULATIONS AND SEPARATIONS

=
j/8∑
s=1

(j + 1)2 · j2 · (j − 1)2 · . . . · (j + 2− s)2

(s!)2 · (j + 1)5s−2 ·m2

<

j/8∑
s=1

1
(s!)2 · (j + 1)3s−2 ·m2

≤ j

8
1

(j + 1) ·m2

<
1

8 ·m2
<

1
m2

The first inequality follows from d > 5 log8/5 m, the second one follows from
j + 1 ≤ m. The probability that any of the m/8 layers from m to 7

8m + 1 is
not expanding is thus less than m

8
1

m2 < 1
m .

If neither of these bad events happens, then G′
i contains by Lemma 3.33

on page 52 a node v with cPeb(G′
i, ∅, {v}) ≥ m/8. We write A(i, α) to

denote the event that Lemma 3.33 on page 52 cannot be applied to G′
i.

To apply Lemma 3.44 on page 56 to Gi, we need a node v on layer 7
8m+1

in G′
i from which there is a path in Gi to the sink t. First we will calculate

an upper bound for the probability that a node v on layer j does not have
a path to t. We will call this probability p(i, j). If there is no node from v
to t, then either there is no child of v on layer j − 1, or none of the children
has a path to t. The probability for the former is(

j − 1
j

)d(j−1)

,

and the probability of the latter is at most p(i, j − 1). Thus

p(i, j) ≤ p(i, j − 1) +
(

j − 1
j

)d(j−1)

≤ p(i, j − 1) +
1
ed

(remember
(

1− 1
x

)x

≤ e−1)

<
m

ed

The last step follows from the fact that p(i, 1) = 0, which holds since t is
the only node on layer 1. With d > 5 log8/5 m, this is less than 1/m4.

m

ed
<

m

exp(5 log8/5 m)

=
m

exp(5 log8/5 e loge m)

=
m

m5 log8/5 e
= m1−5 log8/5 e

<
1

m4
(note 1− 5 log8/5 e < −4)

3.11. REG <> SEM 59

The probability that there is no node on layer 7
8m + 1 in G′

i is (1/2)m/8.
Therefore the probability that there is no node v on layer 7

8m+1 in G′
i from

which there is a path in Gi to the sink t is at most

1
m4

+
(

1
2

)m
8

≤ 1
m3

.

Let us call the event that there is no node to apply Lemma 3.44 on page 56
B(i, α).

Then the event A(i, α) ∪B(i, α) implies that any α-refutation of fβi
(PPGi)

contains a clause with m/8 = Ω(
√

n) βi-negative literals. The probability
of A(i, α) ∪B(i, α) is at most

m

8
· exp

(
− 7m

128

)
+

1
m

+
1

m3
<

3
m

.

The probability that A(i, α) ∪ B(i, α) holds for all 1 ≤ i ≤ n′ is thus at
most

(
3
m

)n′
. Therefore the probability that A(i, α) ∪ B(i, α) holds for all

1 ≤ i ≤ n′ and all α ∈ {0, 1}n is at most 2n
(

3
m

)n′
, which is smaller than 1.

Thus there are β1, . . . , βn′ and G1, . . . , Gn′ such that, for any α there is some
i such that any α-refutation of fβi

(PPGi) has at least width Ω(
√

n).

Theorem 3.46. Let n =
∑m

i=1 i with sufficiently large m, and let n′ > n be a
power of 2. There are β1, . . . , βn′ ∈ {0, 1}n and dags G1, . . . , Gn′ of in-degree
O(log n) with n nodes, such that XOR(joinY (fβ1(PPG1), . . . , fβn′ (PPGn′)))
yields an exponential separation between ordered and semantic resolution.

Proof. The polynomial upper bound for ordered resolution follows directly
from Lemma 3.40 on page 54 and Lemma 3.41 on page 55.

The exponential lower bound follows from the width lower bound proven
in Lemma 3.45 on page 57, which holds for the whole formula because of
Lemma 3.39 on page 54. The width lower bound implies a size lower bound
by Lemma 3.37 on page 53.

3.10.2 Ordered Resolution does not Simulate
Semantic Resolution

The separation ord 6≥ sem is implied by neg 6≤ reg proven in Section 3.2.1,
neg ≤ sem, and ord ≤ reg.

3.11 Regular and Semantic Resolution

In this section we prove reg <> sem. That reg 6≤ sem is implied by ord 6≤
sem proven in Section 3.10.1 and ord ≤ reg. That reg 6≥ sem is implied by
neg 6≤ reg proven in Section 3.2.1 and neg ≤ sem.

60 CHAPTER 3. SIMULATIONS AND SEPARATIONS

3.12 Semantic and General Resolution

Here we prove sem < dag. That sem ≤ dag follows immediately from the
definition. The separation follows from the fact that ord 6≤ sem, proven in
Section 3.10.1.

3.13 Negative and General Resolution

In this section we prove neg < dag. That neg ≤ dag follows immediately
from the definition.

Since every negative refutation is a semantic one (with the all-one-
assignment), this follows immediately from sem < dag proven in Sec-
tion 3.12. This was first proven by Goerdt [18] and later improved by
Buresh-Oppenheim et al. [10].

3.14 Negative and Ordered Resolution

In this section the incomparability of negative and ordered resolution is
shown (neg <> ord).

3.14.1 Negative Resolution is Separated from
Ordered Resolution

Theorem 3.47. neg 6≤ ord

Proof. That neg ≤ ord is impossible, otherwise we would have tree < neg ≤
ord and therefore tree ≤ ord, which contradicts the incomparability of tree-
like and ordered resolution. Thus negative resolution is separated from
ordered resolution.

A direct proof of this separation was given by Bonet et al. [8].

3.14.2 Ordered Resolution is Separated from
Negative Resolution

The separation ord 6≤ neg is implied by ord 6≤ sem proven in Section 3.10.1
and neg ≤ sem.

Chapter 4

Linear Resolution

This chapter is dedicated to linear resolution, which seems to be the most
mysterious refinement discussed in this work. At first glance, linear reso-
lution might seem incomplete, but it is complete, and it is still unknown if
even general resolution is stronger. In this chapter we will present and prove
all we know about the relative strength of linear resolution. Additionally we
will introduce a modified version of linear resolution, which is as strong as
general resolution, and use this to prove a necessary and sufficient condition
for the equivalence of linear and general resolution.

4.1 Linear Resolution Simulates
Tree-like Resolution

Here we show that linear resolution simulates tree-like resolution. The sep-
aration is proven later in Section 4.4. The following proof is due to Jo-
hannsen [24].

Theorem 4.1. There is a linear resolution proof for an unsatisfiable formula
F of size at most 2m if there is a tree-like resolution proof of size m.

Since we get with Theorem 1.9 on page 16 from every tree-like resolution
refutation R′ a regular tree-like resolution refutation R with |R| ≤ |R′|, the
theorem follows from the following lemma.

Lemma 4.2. If there is a regular tree-like derivation R of C from a set
of clauses Γ, and no literal in C is eliminated in R, then there is a linear
derivation of C from Γ with a size of at most 2|R|.

Note that all subtrees of a regular tree-like resolution refutation satisfy
the second assumption.

61

62 CHAPTER 4. LINEAR RESOLUTION

Proof. We prove this by induction on the length of the proof. The base case
is trivial since the derivation is already linear. Now let R end with the step

C ∨ x D ∨ x̄

C ∨D
,

where C ∨ x is derived from Γ through R1 and D ∨ x̄ from C1, . . . , Ck ∈ Γ
through R2, and |R| = |R1|+ |R2|+ 1.

By the induction hypothesis, there is a linear derivation R′
1 of C∨x from

Γ with |R′
1| ≤ 2|R1|. The literal x̄ occurs in at least one of the Ci, w.a.l.o.g.

C1 = C ′
1 ∨ x̄. Resolving C ∨ x with C1 yields C ′

1 ∨ C.
By replacing C1 with C ′

1 ∨C (and changing all descendants to keep it a
derivation), we transform R2 to a regular tree-like derivation R′′

2 of C ∨D
(or C ∨D ∨ x̄ if there is a clause Ci with i 6= 1 that contains x̄).

Since |R2| = |R′′
2 |, and by the induction hypothesis, there is a linear

derivation R′
2 of C ∨D (or C ∨D ∨ x̄) from the clauses C ′

1 ∨ C,C2, . . . , Ck

with |R′
2| ≤ 2|R2|. By appending R′

2 to the end of R′
1, we get a linear

derivation of C ∨D or C ∨D ∨ x̄. In the latter case we add an additional
resolution step (C ∨ x resolved with C ∨ D ∨ x̄ yields C ∨ D). This linear
derivation R′ has size |R′| ≤ |R′

1|+ |R′
2|+ 2 ≤ 2|R1|+ 2|R2|+ 2 = 2|R|.

4.2 Linear Resolution with Restarts

Linear resolution with restarts [11] allows to continue the proof with a clause
from the formula instead of the result of a resolution step.

We will call the linear parts of the proof chains, i.e., the part of the dag
where the result of a resolution is immediately used to continue the proof.
And we will call the step from one chain to the next restart , i.e., every
Ci, Ci+1 where Ci+1 is not derived from Ci.

We will prove in this section that linear resolution with restarts is equiv-
alent to general resolution. This is, as far as I know, a new result.

Theorem 4.3. Linear resolution with restarts simulates general resolution.

Proof. Let P be a resolution proof of length s of a formula F . Sort the
clauses Di in P by the length of the longest path in P between a clause
from F and Di. Then Ds = 2.

We now prove by induction that every clause in P can be derived with
linear resolution with restarts by adding at most s clauses to a derivation
P ′ of the previous clauses.

The beginning is clear (D1 ∈ F).
Now we have to derive Di. We already have a derivation P ′ that derives

all Dj with j < i. All clauses used in P to derive Di are already in P ′ since
the longest path from an axiom to these is shorter than the longest path to
Di. Thus any path in P from an axiom to Di appended to P ′ forms a linear

4.3. LIN = DAG? 63

derivation with restarts of Di. Since there are only s clauses in P , we add
at most s clauses to P ′.

Since every linear resolution with restarts proof is also a general resolu-
tion proof, the latter obviously simulates the first.

Corollary 4.4. Linear resolution with restarts and general resolution are
equivalent.

4.3 Linear Equivalent to General Resolution?

The question if linear resolution is separated from general resolution is still
open. There is a proof for lin < dag in a paper by Buresh-Oppenheim et
al. [10], but this proof is not correct. They use the proposition that a linear
refutation R of F becomes a linear refutation of F dα by applying α to all
clauses in R and removing some clauses. Unfortunately this proposition is
not a fact.

4.3.1 A Necessary and Sufficient Condition

We now prove that linear resolution is equivalent to general resolution if a
weaker version of Corollary 1.8 on page 16 holds for linear resolution. The
following theorem and its proof are due to Hoffmann [21].

Hypothesis 4.5. If there is a linear resolution proof R of size s for an
unsatisfiable formula F , then given a partial assignment α there is a linear
resolution proof R′ for F dα=: F ′ of size at most p(s) for some polynomial
p.

Theorem 4.6. If Hypothesis 4.5 holds, then linear resolution simulates
general resolution.

Proof. Let R be a resolution refutation of F . By Theorem 4.3 on the facing
page we get a linear refutation with restarts R′ that is at most polynomially
bigger.

Now we construct F ′ by adding clauses to F . For each restart Ci, Ci+1

we add the clauses Ci+1 ∨ ȳi and ā ∨ yi for all literals a ∈ Ci and some new
yi.

By using these clauses to derive Ci+1 from Ci, we get a linear refutation
(without restarts) R′′ of F ′. |R′′| ≤ l · |R′| where l is the width of R′.

Since F = F ′dα where α sets all yi to 1 and no other variables, there is
by Hypothesis 4.5 a linear refutation R̃ of F with a size of at most p(|R′′|)
for some polynomial p.

With the above inequalities we have |R̃| ≤ q(|R|) for some polynomial q
and this proves the theorem.

64 CHAPTER 4. LINEAR RESOLUTION

If linear resolution simulates general resolution, then Hypothesis 4.5 on
the preceding page holds, since the size of general resolution refutations is
preserved under restrictions.

Corollary 4.7. Hypothesis 4.5 on the previous page is equivalent to dag =
lin.

4.3.2 Simulation on Special Formulas

We show that linear resolution simulates general resolution if we add special
tautologic clauses. Note that the number of added clauses is only O(n2).

Definition 4.8.
ADDTAUT(F) := F ∪ F̃

where F̃ := {x ∨ x̄ ∨ yε | x, y ∈ var(F), ε ∈ {0, 1}}

Lemma 4.9. If there is a general resolution refutation R of F , then there
is a linear resolution of ADDTAUT(F) that is at most polynomially bigger
than R. Linear resolution simulates general resolution on formulas of the
form ADDTAUT(F).

While the above lemma is due to Buresh-Oppenheim and Pitassi [11],
the following proof is different from theirs.

Proof. By Theorem 4.3 on page 62 we can get a linear refutation R′ with
restarts of F that is at most polynomially bigger than R. Clearly this is also
a refutation of ADDTAUT(F). We construct from this a linear refutation
R′′ by removing all restarts.

Let Ci, Ci+1 be any restart, i.e., Ci+1 is an axiom and not derived from
Ci. Let x be some variable occurring in Ci+1. Now we resolve Ci with
x∨ x̄∨ l for every literal l ∈ Ci. We obtain x∨ x̄. By resolving this with the
axiom Ci+1, we obtain Ci+1 (note that Ci+1 contains the variable x). From
there we continue the proof as before. We repeat this step until there are
no restarts left.

There are at most |R′| restarts and we add at most as many clauses per
restart as the width of R′, therefore R′′ is at most polynomially bigger than
R′ and thus R.

The second part of the lemma follows from the fact that the additional
tautological clauses do not shorten any general resolution proof (Theo-
rem 1.12 on page 19).

4.4 Linear Resolution is not Simulated by . . .

Now we prove that linear resolution is separated from tree-like, regular, or-
dered, semantic, and negative resolution. This is due to Buresh-Oppenheim
and Pitassi [11].

4.4. LIN 6≤ . . . 65

Theorem 4.10. Linear resolution is separated from every resolution refine-
ment Sref from which general resolution is separated and that does not have
smaller proofs for ADDTAUT(F) than for F .

Proof. Let Fn be a family of formulas separating dag from Sref . Then
ADDTAUT(Fn) separates lin from Sref .

Assume this is not the case. Then we can construct, starting with
a short general proof of Fn, a short linear proof of ADDTAUT(Fn) by
Lemma 4.9 on the facing page. From this we construct a short Sref proof
of ADDTAUT(Fn) using the assumption. Then there is also an Sref proof
of the same size for Fn, which contradicts the separation of dag from Sref ,
since the overall blowup is only polynomial.

The above theorem holds for tree-like, regular, ordered, semantic, and
negative resolution.

66 CHAPTER 4. LINEAR RESOLUTION

Chapter 5

Lower Bounds for DLL

In this chapter we will first present and prove the well-known connection
between resolution and DLL. Then we will use this connection to prove lower
bounds for DLL on satisfiable formulas following a work by Alekhnovich et
al. [1].

5.1 On Unsatisfiable Formulas

Lower bounds for DLL on unsatisfiable formulas usually result from the
following connection between DLL and resolution.

Theorem 5.1. If a DLL algorithm A needs s calls of DLL to prove the
unsatisfiability of some formula F , there is a (tree-like) resolution proof of
size s.

Proof. We prove this by labeling the call tree T of a run of A on F in such
a way that we get a resolution refutation of F .

Each leaf is labeled with a clause falsified by the setting at the leaf.
An inner node is labeled with the clause resulting from the resolution of

the clauses of its children on the decision variable v if both clauses contain
v. Otherwise it is set to one of the clauses that does not contain v.

It is obvious that it is always possible to label T in such a way. It is
also obvious that the resulting tree is a resolution derivation of the clause
labeling the root. We only need to prove that the root is labeled with the
empty clause.

We prove the following claim, which implies the above, by induction on
the steps: The clause labeling a node is falsified by the partial assignment of
the node. Since the assignment of the root node does not assign any variable
to a value, it is labeled with the empty clause.

For the leaves this follows directly from the construction.
Suppose the clauses labeling the children of an inner node already fulfill

this. Then, if one of these clauses is used to label the current node, it does

67

68 CHAPTER 5. LOWER BOUNDS FOR DLL

not contain the decision variable, which is the only variable set on the child
nodes but not on the current one. So it is falsified by the assignment of the
current node. If the clause is derived by resolution, the only literal in the
clauses on both children that is not set by the assignment of the current
node is removed by the resolution.

A similar connection between general resolution and DLL with learning
and restarts was shown by Beame et al. [4]. There is currently work in
progress to show if there is a similar connection between DLL with learning
but without restarts and regular tree-like resolution with lemmas [22].

5.2 On Satisfiable Formulas

If NP = co-NP, a DLL algorithm with a good1 heuristic would need only
polynomial time to find a satisfying assignment. Since we do not know
wether NP = co-NP holds or not, we restrict the heuristic in a certain way
and give lower bounds for DLL algorithms using such a restricted heuristic.

5.2.1 Drunken Heuristic

A drunken heuristic has no restrictions on how to choose a variable, but the
value to which the selected variable is assigned is chosen randomly (indepen-
dently and uniformly), i.e., the heuristic chooses only the variable (without
knowing the value). The algorithm is shown in Figure 5.1 on the next page.

The following lower bound and its proof are due to Alekhnovich et al. [1].

Definition 5.2. Let Gn be a family of unsatisfiable formulas with n variables
x1, . . . , xn that require tree-like refutations with exponential size (e.g., the
formula PHP from Section 2.1). We will write G

(j)
n for a copy of the formula

Gn where each variable xi is replaced by x
(j)
i . We define

G̃(j)
n := (G(j)

n ∨ x
(j)
1) ∧ . . . ∧ (G(j)

n ∨ x(j)
n).

We consider G
(j)
n ∨x

(j)
1 as CNF, i.e., x

(j)
1 is added to all clauses of G

(j)
n and

all clauses containing ¬x
(j)
1 are removed. Finally we define

Hn := G̃(1)
n ∧ . . . ∧ G̃(n)

n .

Note that Hn has a size polynomial in n (and the size of Gn) and n2

variables. Hn is satisfiable only by the assignment that assigns all variables
to 1.

1A “good” heuristic could in this case just calculate some satisfying assignment α in
polynomial time and then choose the variables in any order and their values according to
α.

5.2. ON SATISFIABLE FORMULAS 69

DrunkenDLL(F, α)
if F dα = 1

return α
if F dα = 0

return UNSAT

(v) := HEUR(F, α)
HEUR is the heuristic that selects
the variable v to be set next.
v is called decision variable.

ε := RANDOM ∈ {0, 1}

σ := DrunkenDLL(F, α ∪ {v 7→ ε})

if σ 6= UNSAT
return σ

else
return DrunkenDLL(F, α ∪ {v 7→ ¬ε})

Figure 5.1: Drunken DLL Algorithm

Lemma 5.3. Let F and G be formulas with disjoint variables. If F is
satisfiable and G unsatisfiable, then the smallest refutation of F ∧ G is as
big as the smallest refutation of G.

Proof. Every refutation of G is also a refutation of F ∧ G. But we cannot
use any clause of F in a refutation of F ∧ G, since we cannot resolve any
clause derivable from F with any derivable from G, and we cannot derive 2

from F . Thus every refutation of F ∧G is also one of G.

Lemma 5.4. The smallest refutation of G̃
(j)
n dx(j)

i :=0
is at most polynomially

smaller than the smallest one of G
(j)
n dx(j)

i :=0
.

Proof. Note that

G̃(j)
n dx(j)

i :=0
= G(j)

n dx(j)
i :=0

∧
n∧

l=1,l 6=i

(
G(j)

n dx(j)
i :=0

∨x
(j)
l

)
Further note that all clauses appearing in the big disjunction either appear
in G

(j)
n dx(j)

i :=0
or they are subsumed by some clause therein. Thus the lemma

follows from Theorem 1.11 on page 18.

70 CHAPTER 5. LOWER BOUNDS FOR DLL

Theorem 5.5. The probability that a drunken DLL run on Hn needs less
than an exponential number of steps is at most 2−n.

Proof. Consider the case where the first variable occuring in G̃
(j)
n is set. With

probability 1
2 it is set to 0, resulting in an unsatisfiable formula. The smallest

resolution refutation of this formula has, by Lemma 5.3, Lemma 5.4 and the
definition of Hn, a size exponential in n. By Theorem 5.1 on page 67 the
recursive call of DrunkenDLL with this partial assignment needs at least an
exponential number of recursive calls before it returns UNSATISFIABLE.

Since there are n subformulas G̃
(j)
n , the probability that this does not

happen is 2−n.

5.2.2 Myopic Algorithms

A myopic algorithm uses a myopic heuristic, i.e., one that cannot use the
whole formula at once. Here a myopic heuristic may use the following in-
formation:

• the whole formula with all negation signs removed

• the number of occurrences of each literal

• K(n) clauses of the formula, where n is the number of the variables in
the original formula and K(n) := n1−ε with ε > 0

• information revealed in calls upward in the call stack

While a myopic heuristic is generally unable to read all clauses that a vari-
able occurs in, in the formulas we will use every variable occurs in at most
O(log n) clauses.

We will construct formulas from special expander graphs, following a
work by Alekhnovich et al. [1]. We need some additional definitions and
lemmas.

But first we change our definition of formula slightly. In this section
we will consider formulas as multisets instead of sets, i.e., a formula might
contain a clause multiple times. This is probably more realistic, since it is
not useful in a real implementation to remove duplicate clauses from the
intermediate formulas during the run. And it is useful for the proof.

An expander is a graph with bounded degree and with the property that
each subset of nodes has many neighbours. We will identify a graph with
its adjacency matrix and define expanders in terms of m× n matrices over
{0, 1}. Note that we will identify rows and columns with their numbers.

Definition 5.6. For some vector v = (v1, . . . , vm) and a set I ⊆ [m], we
will write vI for the subvector (vi1 , . . . , vi|I|) with i1 < . . . < i|I| ∈ I.

5.2. ON SATISFIABLE FORMULAS 71

Similarly, for an m×n matrix A and I ⊆ [m], we will write AI to denote
the submatrix consisting of the rows I. In particular we will use Ai for A{i}
and identify this with the set {j | Aij = 1}.

Let A be an m × n matrix and I ⊆ [m] a set of rows. We define the
boundary ∂AI (or ∂I) of I as the set

{j ∈ [n] | there is exactly one row i ∈ I with j ∈ Ai}.

The elements of ∂AI are called boundary elements.

Definition 5.7. An m×n matrix A is called (r, s, c)-boundary expander if

1. |Ai| ≤ s for all i ∈ [m], and

2. ∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c · |I|).

Definition 5.8. An m× n matrix A is called (r, s, c)-expander if

1. |Ai| ≤ s for all i ∈ [m], and

2. ∀I ⊆ [m] (|I| ≤ r ⇒ |
⋃

i∈I Ai| ≥ c · |I|).

A boundary expander requires, unlike an expander, the existence of
unique neighbours. Although this is stronger, we have the following lemma.

Lemma 5.9 (Alekhnovich et al. [1]). Every (r, 3, c)-expander is also an
(r, 3, 2c− 3)-boundary expander.

The following lemma simply states that the expanders we need do actu-
ally exist. It can be proven by showing that a certain probabilistic process
generates such an expander. In fact this happens with high probability.

Lemma 5.10 (Alekhnovich et al. [1]). For every sufficiently large n, there is
an n×n matrix A(n) with full rank such that A(n) is an (n/ log14 n, 3, 25/13)-
expander, and furthermore, for every column j of A(n) there are at most
O(log n) rows i with j ∈ Ai.

The following inference relation between sets of rows was introduced by
Alekhnovich and Razborov [3].

Definition 5.11. Let A ∈ {0, 1}m×n be an (r, 3, c)-boundary expander. For
a set of columns J ⊆ [n], we define the inference relation `J on subsets of
rows as follows:

I `J I1 ⇔ |I1| ≤
r

2
∧ ∂A(I1) ⊆

[⋃
i∈I

Ai ∪ J

]

Let the closure Cl(J) of J be the set of all rows which can be inferred
via `∗J from the empty set, i.e., i ∈ Cl(J) if there is a set {I1, . . . , Ik} with
i ∈ Ik, I1 = ∅, and

⋃j
l=1 Il `J Ij+1.

72 CHAPTER 5. LOWER BOUNDS FOR DLL

Lemma 5.12 (Alekhnovich et al. [3]). If |J | ≤ cr
2 , then |Cl(J)| ≤ r

2 .

We need the following inference relation to extract a good expander from
the matrix that corresponds to a partial assignment during the run of the
myopic DLL algorithm.

Definition 5.13. Let A ∈ {0, 1}m×n be an (r, 3, c)-boundary expander. For
a set of columns J ⊆ [n], we define the inference relation `′J on subsets of
rows as follows:

I `′J I1 ⇔ |I1| ≤
r

2
∧

∣∣∣∣∣∂A(I1) \

[⋃
i∈I

Ai ∪ J

]∣∣∣∣∣ < c

2
|I1|

For a set I of rows and a set J of columns we define a cleaning step: If
there is a nonempty set I1 of rows such that I `′J I1, then add I1 to I and
remove all rows in I1 from A.

Now fix some order on sets of rows, set I = ∅ and repeat the cleaning
step as long as it is applicable. We will call the content of I at the end
Cle(J).

The following lemma shows how to use the above inference relation to
extract an expander from a set of columns.

Lemma 5.14 (Alekhnovich et al. [1]). Let A be a matrix as above and J be
a set of columns. Let I ′ := Cle(J) and J ′ :=

⋃
i∈Cle(J) Ai. Remove the rows

in I ′ and the columns J ′ from A and call the result Â. If Â is non-empty,
then it is an (r/2, 3, c/2)-boundary expander.

Lemma 5.15 (Alekhnovich et al. [1]). If |J | < cr
4 , then |Cle(J)| < 2

c |J |.

Lemma 5.16 (Alekhnovich et al. [1]). Let A ∈ {0, 1}m×n be an (r, 3, c′)-
expander, X = {x1, . . . , xn} be a set of variables, X̂ ⊆ X with |X̂| < r, b ∈
{0, 1}m, and L = (l1, . . . , lk) (with k < r) a tuple of equations from Ax = b.
Let L be the set of assignments with domain X̂ that can be extended to
assignments with domain X which satisfy L (in F2). If L is not empty, it is
an affine subspace of {0, 1}| bX| of dimension greater than |X̂| ·

(
1
2 −

14−7c′

2(2c′−3)

)
.

Now we define the formula ΦA(b) and a special property of a partial
assignment used in the remainder of this section.

Definition 5.17. Let A be an (r, 3, c)-boundary expander. Let b ∈ {0, 1}n.
Then ΦA(b) (also Φ(b)) is the formula (in CNF) using the variables x1, . . . , xn

that states Ax = b (in F2), where x = (x1, . . . , xn). For each equation
aij1xj1 + aij2xj2 + aij3xj3 = bi, there are up to 4 clauses in Φ(b). Note that
there are at most three 1s in a row, since A is an (r, 3, c)-boundary expander.

We will, in a slight abuse of notation, identify the variable xj with its
column j.

5.2. ON SATISFIABLE FORMULAS 73

Φ(b) has some properties which are very useful in the proof. First, there
is exactly one satisfying assignment, since A has full rank. Second, every
variable occurs positively as often as negatively in non-unit clauses (here we
use the fact that the formula is a multiset of clauses).

Definition 5.18. We call a partial assignment α locally consistent in re-
spect to Ax = b iff α can be extended to a total assignment which satisfies
the equations corresponding to Cl(J) where J is the domain of α:

ACl(J)x = bCl(J)

Lemma 5.19. Let A be an (r, 3, c)-boundary expander, b ∈ {0, 1}m and α
be a locally consistent assignment. Then, for any set I ⊂ [m] with |I| ≤ r/2,
α can be extended to an assignment β which satisfies AIx = bI .

Proof. Let J be the domain of α.
We prove this by contradiction. Assume there is a set I such that α

cannot be extended to satisfy AIx = bI . We choose a minimal I with this
property. All boundary variables of I must be assigned to a value by α,
short ∂A(I) ⊆ J , otherwise we could remove the equation with the unset
boundary variable, which would contradict the minimality of I. Therefore
Cl(J) ⊇ I, which contradicts the local consistency of α.

We prove that certain unsatisfiable formulas resulting from the above
construction and a partial assignment need tree-like refutations of expontial
size.

Lemma 5.20. For an (r, 3, c)-boundary expander A and a vector b 6∈ Im(A),
every resolution refutation of ΦA(b) has a width of at least cr/2.

Proof. For a clause C we define

µ(C) := min
(AIx=bI)|=C

|I|.

This is subadditive. For any clause C appearing in ΦA(b) we have µ(C) = 1.
We have µ(2) ≥ r for the following reason: Assume µ(2) < r. Then there is
a set I with |I| < r and (AIx = bI) |= 2. Any set I with |I| < r has at least
one boundary variable. Let I ′ be I with one boundary element removed.
Then (AI′x = bI′) |= 2. By repeating this we get (A∅x = b∅) |= 2. But
A∅x = b∅ is satisfiable.

Therefore every resolution refutation of ΦA(b) contains a clause C with
r
2 ≤ µ(C) < r. Now take a minimal set I such that (AIx = bI) |= C.
C has to contain all variables in ∂A(I). Otherwise let Aix = bi be the
equation that contains the boundary variable not in C. Then (AI\{i}x =
bI\{i}) |= C, which contradicts the minimality of I. There are at least
c · |I| ≥ cr/2 elements in ∂A(I), all of these appear in C, thus C has at least
width cr/2.

74 CHAPTER 5. LOWER BOUNDS FOR DLL

Theorem 5.21. If a locally consistent partial assignment α that assigns at
most cr/4 variables to a value results in an unsatisfiable formula Φ(b)dα,
then every tree-like resolution refutation of Φ(b)dα has size 2Ω(r).

Proof. Let V be the domain of α, I := Cle(V) and J :=
⋃

i∈I Ai. By
Lemma 5.15 on page 72, |I| ≤ r/2. Therefore by Lemma 5.19 on the previous
page we can extend α to a partial assignment β such that β assigns all
variables in J to a value and satisfies AIx = bI .

The formula Φ(b)dβ, which is still unsatisfiable, is the encoding of a linear
equation system A′x = b′ where A′ results from A by removing all rows in
I and all columns in J . By Lemma 5.14 on page 72, A′ is an (r/2, 3, c/2)-
boundary expander. The minimal width in Lemma 5.20 on the previous page
and Corollary 2.10 on page 28 yield the lower bound in the theorem.

Next we will prove the lower bound for myopic algorithms on ΦA(b) using
an n×n expander A provided by Lemma 5.10 on page 71. Let r := n/ log14 n,
c′ := 25/13 and c = 2c′−3. Thus by Lemma 5.9 on page 71, A is an (r, 3, c)-
boundary expander. We will prove the lower bound for a clever myopic
algorithm. We call a myopic algorithm clever if it

• has the ability to read all clauses in Cl(J) for free if it reveals at least
one occurance of each variable in J .

• selects one of the revealed variables.

• never makes a stupid move: Whenever it reveals the clauses D and
chooses the variable xj , it does assign it to the correct value if D
implies such a value.

The proof works by showing that the algorithm cannot get enough infor-
mation about the formula during the first steps and thus needs to refute a
formula which is hard to refute.

Lemma 5.22. After the first
⌊

cr
6K

⌋
steps a clever myopic algorithm knows

at most r/2 bits of b.

Proof. At each step the algorithm reads K clauses, and thus at most 3K
different variables. After

⌊
cr
6K

⌋
steps these are at most cr/2 variables, thus

by Lemma 5.12 on page 72, the algorithm can know at most the clauses for
r/2 of the equations, and thus at most r/2 bits of b.

Lemma 5.23. During the first
⌊

cr
6K

⌋
steps the current partial assignment

made by a clever myopic algorithm is locally consistent (in particular, the
algorithm does not backtrack).

Proof. We prove this by induction on the number of steps. The first assign-
ment is empty and thus locally consistent. A clever myopic algorithm will

5.2. ON SATISFIABLE FORMULAS 75

always extend a locally consistent assignment by definition in such a way
that it is still locally consistent if this is possible. By Lemma 5.19 on page 73
this is possible as long as |Cl(J ∪ {xj})| ≤ r/2, where J is the domain of
the current assignment and xj is the variable chosen in this step. This is
the case during the first

⌊
cr
6K

⌋
steps.

Now we are ready to prove the main theorem of this section, the lower
bound for myopic algorithms.

Theorem 5.24. Let b be chosen randomly (uniformly and independently)
from {0, 1}n. Then every deterministic (clever) myopic DLL algorithm A,
that reads at most K = K(n) clauses per recursive call, needs 2Ω(r) recursive
calls to refute Φ(b) with probability 2−Ω(r/K).

Proof. Everytime A reads the clauses corresponding to one equation Aix =
bi, it learns one bit of b. After the first t :=

⌊
cr
6K

⌋
steps it has learned

(by Lemma 5.22 on the preceding page) at most r/2 bits of b. Let It be the
revealed bits and let Rt be the set of the t variables (note that by Lemma 5.23
on the facing page, A did not backtrack until now) which are assigned to
a value at this time. We will call the current partial assignment αt. Let
E := [(A−1b)Rt = αt] be the event that αt assigns all variables in Rt to the
correct value. We identify here the partial assignment with a bitvector of
length t such that the above works. This event is equivalent with “Φ(b)dαt

is satisfiable”. Now we want to estimate the conditional probability

Pr[E | It = I,Rt = R, bIt = δ, αt = α],

for some I ⊂ [n], R ⊂ [n], δ ∈ {0, 1}|I| and α ∈ {0, 1}R. If this conditional
probability is small (for all I,R, δ, α), then the probability of E is small.

We now use Lemma 5.16 on page 72 and set L = {Aix = δi}i∈I , X to
the set of variables in L and X̂ = R. Then dimL > 2

11 |R|, where L is the
set of locally consistent assignments with domain R. Define

b̂i =

{
δi i ∈ I

bi otherwise.

Note that b̂ has the distribution of b when we fix It = I and bI = δ. The
vector b̂ is independent of the event E1 := [It =I ∧ Rt =R ∧ bIt =δ ∧ αt =α],
since we only need to look at the bits bI to check if E1 holds. (A−1b̂)R is
distributed uniformly on L, thus

Pr[E | It = I,Rt = R, bIt = δ, αt = α]
= Pr[(A−1b̂)R = α | It = I,Rt = R, bIt = δ, αt = α]
= Pr[(A−1b̂)R = α]
≤ 2− dimL

76 CHAPTER 5. LOWER BOUNDS FOR DLL

< 2−
2
11
|R|

≤ 2−
cr

1000K

Since by Lemma 5.23 on page 74 αt is locally consistent, it takes 2Ω(r)

steps to refute the formula that results if E does not happen (by Theo-
rem 5.21 on page 74 and Theorem 5.1 on page 67).

Corollary 5.25. Let b be chosen randomly (uniformly and independently)
from {0, 1}n, and choose enough random bits for the algorithm in the same
way. Then every (randomized) (clever) myopic DLL algorithm, that reads
at most K = K(n) clauses per recursive call, needs 2Ω(n log−14 n) recursive
calls to refute Φ(b) with probability 2−Ω(K−1n log−14 n).

Chapter 6

Conclusion

We have studied several refinements of resolution, in particular tree-like,
regular, ordered, negative, semantic, and linear resolution as well as regular
tree-like resolution with lemmas. Additionally, we presented some results
concerning the connection between resolution and DLL, the basis for most
complete SAT-solvers.

We gave complete proofs for all known simulations and separations of
the different refinements. Only one well-known result about graphs was just
quoted. While proofs for most of the results can be found in the given
literature, the proofs compiled in this work share a common notation and
do in fact prove what is needed. Some of them are simpler than the version
in the literature and some errors were corrected.

Furthermore we introduced and studied a new approach to learn more
about the strength of linear resolution. This approach leads us to a new
and more elegant proof of the result which is the base of the proof of most
separations between linear resolution and the other refinements.

Open Questions

There are still some open questions regarding the relative strengths of reso-
lution refinements. Linear resolution is still somewhat mysterious. It is still
unknown if it simulates any of the other refinements (except tree-like reso-
lution). In particular there is still no known separation between general and
linear resolution. The influence of weakening on the size of linear resolution
refutations also is not yet clear. While it is obvious that linear resolution
refutations are not preserved under restrictions, whether there are not much
bigger1 refutations for restricted formulas is still unresolved.

The other source of open questions is regular tree-like resolution with
lemmas. It is not clear if it simulates linear, semantic, or negative reso-
lution. We also do not know whether the separation is between rtrl and

1See Hypothesis 4.5 on page 63 for the exact meaning of “not much bigger”.

77

78 CHAPTER 6. CONCLUSION

general resolution, between rtrl and regular resolution, or if there are both
separations. Similar to linear resolution, the influence of weakening and re-
strictions is unknown. For regular tree-like resolution with lemmas there is
currently work in progress [22].

Bibliography

[1] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Ex-
ponential lower bounds for the running time of DPLL algorithms on
satisfiable formulas. J. Autom. Reasoning, 35(1-3):51–72, 2005. 67, 68,
70, 71, 72

[2] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general res-
olution. Theory of Computing (accepted for publication), 2007. Prelim-
inary version in STOC 2002. 40, 43, 46

[3] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for
polynomial calculus: Non-binomial case. In 42nd Annual Symposium
on Foundations of Computer Science (FOCS 2001), pages 190–199, Las
Vegas, Nevada, USA, October 2001. IEEE Computer Society. 71, 72

[4] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards un-
derstanding and harnessing the potential of clause learning. J. Artif.
Intell. Res. (JAIR), 22:319–351, 2004. 68

[5] Paul Beame and Toniann Pitassi. Simplified and improved resolution
lower bounds. In 37th Annual Symposium on Foundations of Com-
puter Science (FOCS ’96), pages 274–282, Burlington, Vermont, USA,
October 1996. IEEE Computer Society. 23

[6] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near op-
timal separation of tree-like and general resolution. Combinatorica,
24(4):585–603, 2004. 32, 34

[7] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution
made simple. J. ACM, 48(2):149–169, 2001. 27, 29

[8] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Jo-
hannsen. On the relative complexity of resolution refinements and cut-
ting planes proof systems. SIAM J. Comput., 30(5):1462–1484, 2000.
35, 36, 60

79

80 BIBLIOGRAPHY

[9] Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs
for resolution. Computational Complexity, 10(4):261–276, 2001. 41, 48

[10] Josh Buresh-Oppenheim, David Mitchell, and Toniann Pitassi. Linear
and negative resolution are weaker than resolution. Electronic Collo-
quium on Computational Complexity (ECCC), 8(074), 2001. 49, 60,
63

[11] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of res-
olution refinements. In 18th IEEE Symposium on Logic in Computer
Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, Proceedings,
pages 138–. IEEE Computer Society, 2003. 48, 51, 62, 64

[12] Samuel R. Buss. An introduction to proof theory. In Handbook of Proof
Theory, chapter 1. Elsevier, Amsterdam, 1998. 15

[13] Samuel R. Buss and Toniann Pitassi. Resolution and the weak pigeon-
hole principle. In Mogens Nielsen and Wolfgang Thomas, editors, CSL,
volume 1414 of Lecture Notes in Computer Science, pages 149–156.
Springer, 1997. 24

[14] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. J. Symb. Log., 44(1):36–50, 1979. 11, 12

[15] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962. 19

[16] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7(3):201–215, 1960. 19

[17] Andreas Goerdt. Davis-Putnam resolution versus unrestricted resolu-
tion. Ann. Math. Artif. Intell., 6(1-3):169–184, 1992. 47

[18] Andreas Goerdt. Unrestricted resolution versus N-resolution. Theor.
Comput. Sci., 93(1):159–167, 1992. 60

[19] Andreas Goerdt. Regular resolution versus unrestricted resolution.
SIAM J. Comput., 22(4):661–683, 1993. 46

[20] Armin Haken. The intractability of resolution. Theor. Comput. Sci.,
39:297–308, 1985. 23

[21] Jan Hoffmann. Personal communication, 2007. 63

[22] Jan Hoffmann. Resolution proofs and DLL algorithms (working title).
Diplomarbeit, LMU München, 2007. In preparation. 48, 68, 78

[23] Jan Johannsen. Exponential incomparability of tree-like and ordered
resolution. Unpublished Draft, 2001. http://www.tcs.informatik.
uni-muenchen.de/∼jjohanns/notes/string.ps.gz. 35

http://www.tcs.informatik.uni-muenchen.de/~jjohanns/notes/string.ps.gz
http://www.tcs.informatik.uni-muenchen.de/~jjohanns/notes/string.ps.gz

BIBLIOGRAPHY 81

[24] Jan Johannsen. Unpublished, 2005. 61

[25] Jan Johannsen. Personal communication, 2007. 46

[26] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space
bounds for a game on graphs. Mathematical Systems Theory, 10:239–
251, 1977. 22

[27] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algo-
rithms for k-SAT (preliminary version). In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 128–
136, San Francisco, CA, USA, January 2000. ACM/SIAM. 33

[28] John Alan Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965. 9

Index

Symbols
F dα . 11
[n] .10
Φ(b) .72
β-negative .55
β-positive . 55
∂AI . 71
` .13
`′J .72
`J .71
`k .13
<> .12
> . 12
≤ . 12
2 .12
0-critical . 38

A
assignment . 10
axiom . 12

B
boundary .71
boundary elements 71
boundary expander 71

C
c-pebbling . 51
chain . 62
clause . 10

monotone 24
negative .10
positive . 10
tautological10, 19
unit . 10

clause learning20, 68
Cle(J). .72
Cl(J) . 71
closure . 71
CNF . 10
cPeb() .51
0-critical . 38
critical assignment24, 38, 43

D
dag see resolution, general
dag-like resolution

see resolution, general
delayer . 33
DLL algorithm.19, 67
drunken heuristic68

E
ē(α, β). .55
expander . 71
r-expanding . 52

F
fα .52

G
general resolution

see resolution, general
graph

layered . 51
pyramid-like52

H
hole clause . 23

I
incomparability12

82

INDEX 83

J
joinY () .54

L
layer . 51
learning see clause learning
lemma. .14
lin see resolution, linear
linear resolution

see resolution, linear
literal . 10

negative .10
positive . 10
pure . 10, 20

locally consistent 73

M
matching . 23
monotone calculus24
myopic heuristic 70

N
neg see resolution, negative
β-negative .55
negative resolution

see resolution, negative

O
OPn .40
OP′

n,ρ . 40
ord see resolution, ordered
ordered resolution

see resolution, ordered
ordering principle40

P
partial critical assignment 43
cPeb() .51
Peb() .21
pebbling .21
c-pebbling . 51
pebbling axiom 51
pebbling axioms 32
pebbling formula 32

simplified.49

pebbling number 21
PG .32, 49
P′

G . 49
PHPm

n .23
pigeon clause . 23
β-positive . 55
PPG .51
proof system . 11

equivalence12
prover . 33
Pyr(m, d) . 52

R
r-expanding . 52
reg see resolution, regular
regular resolution

see resolution, regular
regular tree-like resolution with lem-

mas . .see resolution, regular
tree-like with lemmas

resolution . 12
dag-like . . see resolution, general
general 13, 46, 60, 63
linear.14, 61, 63, 64
linear with restarts 62
negative. . .13, 40, 48, 49, 60, 64
ordered13, 32, 35, 47, 51, 60, 64
positive . 13
regular13, 40, 46, 47, 59, 64
regular tree-like with lemmas14,

47
semantic . . 13, 49, 51, 59, 60, 64
tree-like13, 32, 35, 46–48, 61, 64
tree-like with lemmas 14, 47

resolution rule 12
restart (linear res.) 62
restarts (DLL).21
restriction see assignment
rtrl . see resolution, regular tree-like

with lemmas

S
SAT .11
semsee resolution, semantic

84 INDEX

semantic resolution
see resolution, semantic

separation 12, 31
simulation 12, 31
sink axiom . 51
sink axioms. .32
size of a resolution derivation 13
source axiom 32, 51
SPn,m . 35
SP′

n,m . 37
string of pearls 35
subsumption. .20
Supp(α) .43

T
transitivity axiom 40
tree see resolution, tree-like
tree-like resolution

see resolution, tree-like
tree-like resolution with lemmas . see

resolution, tree-like with lem-
mas

U
unit propagation.20
UNSAT . 11

W
weakening . 17
weakening rule 17
width . 27

of a clause10
of a formula 10
of a resolution derivation 13

X
XOR() . 53
xorification . 53

Z
zeros(C, β) .55

	Contents
	Declaration
	Abstract
	Acknowledgments
	Introduction and Preliminaries
	Introduction
	Definitions and Preliminaries
	Formulas
	Proof Systems
	Resolution
	Weakening
	Tautological Clauses

	DLL Algorithms
	Pebbling

	Lower Bounds for Resolution
	Lower Bound for PHP
	Short Proofs are Narrow

	Simulations and Separations
	tree<>ord
	ord≰tree
	tree≰ord

	neg<>reg
	neg≰reg
	neg≱reg

	reg<dag
	tree<dag
	tree<reg
	ord<reg
	reg≤rtrl
	tree<neg
	neg<sem
	ord<>sem
	ord≰sem
	ord≱sem

	reg<>sem
	sem<dag
	neg<dag
	neg<>ord
	neg≰ord
	ord≰neg

	Linear Resolution
	lin≥tree
	Linear Resolution with Restarts
	lin=dag?
	A Necessary and Sufficient Condition
	Simulation on Special Formulas

	lin≰...

	Lower Bounds for DLL
	On Unsatisfiable Formulas
	On Satisfiable Formulas
	Drunken Heuristic
	Myopic Algorithms

	Conclusion
	Open Questions

	Bibliography
	Index

